

0020-7683(93)E0041-F

VIBRATION OF PERFORATED DOUBLY-CURVED SHALLOW SHELLS WITH ROUNDED CORNERS

K. M. LIEW and C. W. LIM

Dynamics and Vibration Centre, School of Mechanical and Production Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 2263

(Received 31 March 1993; in revised form 1 December 1993)

Abstract—This study examines the natural frequency and vibratory characteristics of doubly-curved shallow shells having an outer super-elliptical periphery and an inner super-elliptical cutout. A super-elliptical boundary in this context is defined as $(2x/a)^{2n} + (2y/b)^{2n} = 1$, where $n = 1, 2, 3, ..., \infty$. This class of shells with rounded outer and inner corners has a great advantage over shells with a rectangular planform as stress concentration at the corners is greatly diffused. As a result, the high stress durability of such shells has a great potential for use in practical engineering applications, especially in aerospace, mechanical and marine structures. The doubly-curved shells investigated possess variable positive (spherical), zero (cylindrical) and negative (hyperbolic paraboloidal) Gaussian curvatures. A global energy approach is proposed to the study of such shell problems. The Ritz minimization procedure with a set of orthogonally generated two-dimensional polynomial functions is employed in the current formulation. This method is shown to yield better versatility, efficiency and less computational execution than the discretization methods.

1. INTRODUCTION

The vibration of shallow shells (Leissa, 1973a) has long been a subject of intensive research for many years. A vast number of references can be found for such analyses of cylindrical and spherical shallow shells (Webster, 1968; Deb Nath, 1969; Petyt, 1971; Olson and Lindberg, 1971; Leissa *et al.*, 1983; Leissa and Narita, 1984; Cheung *et al.*, 1989). However, the literature dealing with shells with circular and elliptical planforms is limited. To the authors' knowledge, the only study was done by Narita and Leissa (1986) who investigated the completely free shallow shells of curvilinear planform.

Rectangular plates with rounded corners, the so-called super-elliptical plates, had been examined by Irie *et al.* (1983) and Wang *et al.* (1993). The doubly-connected plates of arbitrary shape with over-restrained boundaries have been treated recently by Liew (1993). No studies can be found for flexural vibration of doubly-curved shallow shells with an internal cutout having super-elliptical inner and outer peripheries. This class of shells, however, has many possible engineering applications, especially in aerospace, mechanical and marine structures, owing to its capability to diffuse and dilute stress concentration at the rounded corners and thus possesses higher stress durability. It is, therefore, the primary motivation of the current paper to investigate the vibration behaviour of this class of perforated shallow shells. With the aim of enhancing the literature, a set of comprehensive natural frequencies and mode shapes of such shells subject to various boundary constraints is presented.

The eigenvalue derivation, in this paper, is based on the Ritz minimization procedure. A class of admissible pb-2 shape functions is employed (Lim and Liew, 1994; Liew and Lim, 1994a, b). These pb-2 shape functions consist of the product of sets of orthogonally generated two-dimensional polynomial functions (p-2) and a basic function (b). These kinematically oriented shape functions ensure automatic satisfaction of the prescribed geometric boundary conditions at the outset. As a result, this method of analysis prevails over the discretization methods in terms of versatility, efficiency and computation effort with no loss of (or even better) accuracy.

The present undertaking covers wide ranges of curvature ratios and shallowness ratios with selective super-elliptical shell geometries. Results of rectangular shells with a circular cutout is also presented to emphasize the consistency and accuracy of frequencies between the super-elliptical and rectangular shells. The convergence and comparison tests of eigenvalues are examined to ensure the numerical accuracy and reliability of these results. Sets of non-dimensional frequency parameters and mode shape figures are presented for future reference.

2. THEORETICAL FORMULATION

2.1. Problem definition

Consider a homogeneous, isotropic and thin perforated doubly-curved shallow shell bounded by a super-elliptical boundary with thickness h and radii of curvature R_x and R_y . The geometric expression of the midsurface of the shell in rectangular cooordinate system is given as

$$z = -\frac{1}{2} \left(\frac{x^2}{R_x} + \frac{y^2}{R_y} \right) \tag{1}$$

and the super-elliptical circumferences can be represented by

$$\left(\frac{2x}{a}\right)^{2n} + \left(\frac{2y}{b}\right)^{2n} = 1; \quad n = 1, 2, 3, \dots, \infty,$$
(2)

where a and b are the maximum shell dimensions in the x- and y-directions, respectively. The shell is doubly-connected with a super-elliptical cutout of dimensions a' and b'. Figure 1 shows the planform of the shell where $2n_1$ and $2n_2$ are the powers of the super-elliptical functions of the outer and inner peripheries. The deflections of the midsurface are resolved into three orthogonal components u, v and w, with u and v tangential to the midsurface (u parallel to the xz-plane and v parallel to the yz-plane) and w normal to it.

The free vibration frequencies and mode shapes of this perforated super-elliptical shell are determined using the Ritz formulation. Two classes of perforated shells are under the present consideration: (1) simply supported and (2) fully clamped shells on the outer circumferences. Both shells have the inner boundaries free. These boundary constraints are termed SF and CF (where S and C stand for the simply supported and fully clamped outer circumferences, respectively, and F the free inner boundary).

Fig. 1. Geometry of the planform of super-elliptical shell $(2x/a)^{2n_1} + (2y/b)^{2n_1} = 1$ with a superelliptical cutout $(2x/a')^{2n_2} + (2y/b')^{2n_2} = 1$.

2.2. Energy functional

The total strain energy, \mathcal{U}_s , of the shell described above is composed of the membrane strain energy, \mathcal{U}_s , and the bending strain energy, \mathcal{U}_b

$$\mathscr{U} = \mathscr{U}_s + \mathscr{U}_b. \tag{3}$$

The membrane strain energy is caused by the stretching effects of the midsurface of the shell. The strain energy components are respectively given by (Leissa *et al.*, 1983)

$$\mathscr{U}_{s} = \frac{6D}{h^{2}} \iint_{A} \left[(\varepsilon_{x} + \varepsilon_{y})^{2} - 2(1 - \nu) \left(\varepsilon_{x} \varepsilon_{y} - \frac{1}{4} \gamma_{xy}^{2} \right) \right] \mathrm{d}A \tag{4}$$

and

$$\mathscr{U}_{b} = \frac{D}{2} \iint_{A} \left\{ (\Delta w)^{2} - 2(1-v) \left[\frac{\partial^{2} w}{\partial x^{2}} \frac{\partial^{2} w}{\partial y^{2}} - \left(\frac{\partial^{2} w}{\partial x \partial y} \right)^{2} \right] \right\} \mathrm{d}A, \tag{5}$$

where the flexural rigidity $D = Eh^3/12(1-v^2)$, E is Young's modulus, v is the Poisson ratio, A is the shell planform area and Δ is the Laplacian operator defined as $(\partial^2/\partial x^2 + \partial^2/\partial y^2)$. The double integration is performed over the projected planform area of the shell on the xy-plane.

The strains of the membrane can be expressed in terms of the deflections as

$$\varepsilon_x = \frac{\partial u}{\partial x} + \frac{w}{R_x}; \quad \varepsilon_y = \frac{\partial v}{\partial y} + \frac{w}{R_y}; \quad \gamma_{xy} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}.$$
 (6a-6c)

The kinetic energy is given by

$$\mathscr{T} = \frac{\rho h}{2} \iint_{A} \left[\left(\frac{\partial u}{\partial t} \right)^{2} + \left(\frac{\partial v}{\partial t} \right)^{2} + \left(\frac{\partial w}{\partial t} \right)^{2} \right] \mathrm{d}A, \tag{7}$$

where ρ is the mass density per unit volume.

Assuming the free vibration amplitude to be small, the deflection functions may be expressed as sinusoidal functions

$$u(x, y, t) = U(x, y) \sin \omega t$$
(8a)

$$v(x, y, t) = V(x, y)\sin\omega t$$
(8b)

$$w(x, y, t) = W(x, y) \sin \omega t, \qquad (8c)$$

where ω is the angular frequency of vibration. By using eqns (6a–c) and (8a–c), the strain energy and kinetic energy components, eqns (4), (5) and (7), can be further simplified to the following expressions

$$(\mathcal{U}_{s})_{\max} = \frac{6D}{h^{2}} \int \int_{A} \left\{ \left(\frac{\partial U}{\partial x} \right)^{2} + 2 \frac{W}{R_{x}} \frac{\partial U}{\partial x} + \left(\frac{W}{R_{x}} \right)^{2} + \left(\frac{\partial V}{\partial y} \right)^{2} + 2 \frac{W}{R_{y}} \frac{\partial V}{\partial y} + \left(\frac{W}{R_{y}} \right)^{2} \right. \\ \left. + 2v \left(\frac{\partial U}{\partial x} \frac{\partial V}{\partial y} + \frac{\partial U}{\partial x} \frac{W}{R_{y}} + \frac{W}{R_{x}} \frac{\partial V}{\partial y} + \frac{W}{R_{x}} \frac{W}{R_{y}} \right) \right. \\ \left. + \frac{1 - v}{2} \left[\left(\frac{\partial V}{\partial x} \right)^{2} + 2 \frac{\partial V}{\partial x} \frac{\partial U}{\partial y} + \left(\frac{\partial U}{\partial y} \right)^{2} \right] \right\} dA$$
(9a)

$$(\mathscr{U}_b)_{\max} = \frac{D}{2} \iint_A \left\{ (\Delta W)^2 - 2(1-\nu) \left[\frac{\partial^2 W}{\partial x^2} \frac{\partial^2 W}{\partial y^2} - \left(\frac{\partial^2 W}{\partial x \partial y} \right)^2 \right] \right\} dA$$
(9b)

$$\mathscr{F}_{\max} = \frac{\rho h \omega^2}{2} \iint_A \left(U^2 + V^2 + W^2 \right) \mathrm{d}A, \tag{9c}$$

where $(\mathcal{U}_b)_{\max}$, $(\mathcal{U}_s)_{\max}$ and \mathcal{T}_{\max} denote the maximum bending strain, stretching strain and kinetic energies in a vibratory cycle. U(x, y), V(x, y) and W(x, y) are the deflection amplitude functions in the x-, y- and z-directions.

2.3. Eigenvalue equation

In non-dimensional coordinates, $\xi = x/a$ and $\eta = y/b$, where a and b are the characteristic length scales of the shell planform as shown in Fig. 1. The deflection amplitude functions can be approximated by sets of orthogonally generated two-dimensional polynomials of the forms

$$U(\xi, \eta) = \sum_{i=1}^{m} C_{i}^{u} \phi_{i}^{u}(\xi, \eta)$$
(10a)

$$V(\xi, \eta) = \sum_{i=1}^{m} C_{i}^{v} \phi_{i}^{v}(\xi, \eta)$$
(10b)

$$W(\xi, \eta) = \sum_{i=1}^{m} C_{i}^{w} \phi_{i}^{w}(\xi, \eta),$$
 (10c)

where C_i^u , C_i^v and C_i^w are the unknown coefficients. The *pb*-2 shape functions ϕ_i^u , ϕ_i^v and ϕ_i^w and the corresponding boundary conditions will be discussed in due course.

Minimization of the energy functional with respect to the unknown coefficients according to the Ritz principle as follows:

$$\frac{\partial}{\partial C_i^{\alpha}} (\mathcal{U}_{\max} - \mathcal{F}_{\max}) = 0, \quad \alpha = u, v \text{ and } w$$
(11)

in which $\mathscr{U}_{max} = (\mathscr{U}_s)_{max} + (\mathscr{U}_b)_{max}$, results in the following governing eigenvalue equation

$$(12\mathbf{K} - \lambda^2 \mathbf{M}) \{ \mathbf{C} \} = \{ \mathbf{0} \}, \tag{12}$$

where **K** is the stiffness matrix and **M** is the mass matrix. The detailed expressions for eqn (11) and the elements of **K** and **M** are given in Appendices A and **B**, respectively. The eigenvalue, λ , in eqn (12) is the non-dimensional frequency parameter of the vibrating shallow shell to be studied in the present analysis.

2.4. The pb-2 shape functions and boundary constraints

The *pb*-2 shape functions for U, V and W are ϕ_i^u , ϕ_i^v and ϕ_i^w , respectively. These shape functions are fundamentally sets of admissible functions which are composed of the product of terms (indicated by *i*) of a two-dimensional orthogonally generated polynomial (*p*-2) and a basic function (*b*), i.e.

$$\phi_i^{\alpha}(\xi,\eta) = f_i(\xi\,\eta)\phi_1^{\alpha} - \sum_{j=1}^{i-1} \Xi_{ij}^{\alpha}\phi_j^{\alpha}, \tag{13}$$

where

$$\Xi_{ij}^{\alpha} = \frac{{}_{1}\Delta_{ij}^{\alpha}}{{}_{2}\Delta_{j}^{\alpha}}$$
(14a)

$${}_{1}\Delta_{ij}^{\alpha} = \iint_{A} f_{i}(\xi,\eta)\phi_{1}^{\alpha}\phi_{j}^{\alpha}\,\mathrm{d}\xi\,\mathrm{d}\eta \tag{14b}$$

$$_{2}\Delta_{j}^{\alpha} = \iint_{A} (\phi_{j}^{\alpha})^{2} d\xi d\eta, \quad \alpha = u, v \text{ and } w.$$
 (14c)

 $\sum_{i=1}^{m} f_i(\xi, \eta)$ forms a set of *p*-2 functions. The basic function, ϕ_1^{α} is defined as the product of the equations of the continuous piecewise boundary geometric expressions each of which is raised to a basic power depending on the types of boundary constraints imposed on the shell, i.e.

$$\phi_1^{\alpha}(\xi,\eta) = \prod_{i=1}^{n_c} \left[\Gamma_i(\xi,\eta) \right]^{\gamma_i^{\alpha}}, \quad \alpha = u, v \text{ and } w, \tag{15}$$

where n_e is the number of supporting edges; Γ_i is the boundary expression of the *i*th supporting edge; and γ_i^{α} ($\alpha = u, v$ and w) are the basic powers.

The Ritz method requires an admissible function which satisfies the geometric boundary conditions. The imposition of the powers to the basic functions, $\phi_1^{\alpha}(\xi, \eta)$, results in a class of kinematically oriented *pb*-2 shape functions consistent with the following geometric

Table 1(a). Convergence of $\lambda = \omega a b \sqrt{(\rho h/D)}$ for the doubly-connected super-elliptical and rectangular simply supported shallow shells with a circular cutout (v = 0.3, a/b = 1.0, a'/b' = 1.0, a'/a = 0.3, a/h = 100.0 and $n_2 = 1$)

		р			Mode sequence number								
\boldsymbol{n}_1	u	v	w	1	2	3	4	5	6	7	8		
	10	10	10	156.14	156.14	192.73	192.73	216.90	221.97	221.97	258.96		
	10	10	12	155.75	155.76	192.44	192.44	216.55	221.31	221.31	258.92		
	10	10	14	155.39	155.39	192.02	192.02	216.32	221.04	221.04	258.88		
	10	10	16	154.90	154.90	191.61	191.61	216.26	220.87	220.87	258.64		
	10	10	18	154.35	154.36	191.31	191.31	216.24	220.70	220.71	256.78		
	10	12	18	152.57	153.16	191.00	191.06	212.78	219.05	219.18	256.31		
	10	14	18	151.82	152.56	190.75	190.81	211.22	217.96	218.08	255.96		
1	10	16	18	151.50	152.28	190.58	190.64	210.58	217.36	217.43	255.75		
	10	18	18	151.34	152.16	190.49	190.52	210.31	217.07	217.11	255.63		
	10	20	18	151.27	152.11	190.44	190.46	210.18	216.93	216.95	255.57		
	12	20	18	149.99	150.41	190.24	190.25	207.70	214.76	214.78	255.10		
	14	20	18	149.51	149.67	190.06	190.07	206.56	213.40	213.42	254.74		
	16	20	18	149.31	149.35	189.93	189.93	206.09	212.74	212.75	254.50		
	18	20	18	149.18	149.18	189.85	189.85	205.90	212.46	212.46	254.36		
	20	20	18	149.08	149.08	189.81	189.81	205.83	212.29	212.29	254.29		
	10	10	10	164.31	166.70	191.29	191.29	218.91	220.96	220.97	245.07		
	10	10	12	164.02	166.44	191.18	191.18	216.95	216.95	218.67	243.42		
	10	10	14	163.91	166.40	191.07	191.07	216.72	216.72	218.19	242.72		
	10	10	16	163.79	166.33	190.89	190.89	216.65	216.65	217.99	241.86		
	10	10	18	163.64	166.24	190.65	190.65	216.58	216.58	217.90	240.75		
	10	12	18	160.84	161.61	190.30	190.60	213.23	215.36	215.43	240.52		
	10	14	18	158.59	159.11	189.92	190.50	210.20	214.46	214.53	240.14		
10	10	16	18	156.90	157.70	189.57	190.35	208.27	213.71	213.76	239.65		
	10	18	18	155.82	156.97	189.29	190.15	207.07	213.03	213.30	239.09		
	10	20	18	155.21	156.63	189.10	189.96	206.37	212.51	213.02	238.61		
	12	20	18	151.67	152.26	189.07	189.75	202.31	210.71	211.38	238.45		
	14	20	18	148.85	149.91	189.03	189.49	199.54	209.10	209.84	238.31		
	16	20	18	146.91	148.76	188.97	189.22	197.81	207.82	208.39	238.17		
	18	20	18	145.79	148.25	188.89	188.98	196.82	206.93	207.18	238.06		
	20	20	18	145.28	148.01	188.80	188.80	196.27	206.34	206.34	237.95		
	10	10	10	154.66	156.12	190.57	190.57	208.42	213.92	213.92	242.44		
	10	10	12	154.43	155.91	190.45	190.45	208.09	213.51	213.51	241.79		
	10	10	14	154.24	155.79	190.23	190.23	207.77	213.37	213.37	240.82		
	10	10	16	153.99	155.63	189.96	189.96	207.64	213.29	213.29	239.60		
	10	10	18	153.70	155.43	189.68	189.68	207.59	213.20	213.20	238.40		
	10	12	18	151.88	153.04	189.29	189.60	204.71	212.05	212.12	238.03		
	10	14	18	150.84	151.65	188.95	189.51	202.66	211.16	211.24	237.63		
œ	10	16	18	150.09	150.96	188.68	189.38	201.58	210.32	210.69	237.21		
	10	18	18	149.73	150.53	188.50	189.24	200.92	209.72	210.37	236.80		
	10	20	18	149.52	150.32	188.39	189.12	200.58	209.30	210.19	236.49		
	12	20	18	147.12	148.42	188.34	188.86	198.11	207.61	208.61	236.36		
	14	20	18	145.55	147.55	188.29	188.58	196.64	206.34	207.18	236.23		
	16	20	18	144.67	147.12	188.23	188.36	195.81	205.52	206.01	236.12		
	18	20	18	144.23	146.90	188.16	188.20	195.38	205.05	205.21	236.03		
	20	20	18	144.05	146.73	188.10	188.10	195.14	204.74	204.74	235.96		

Table 1(b). Convergence of $\lambda = \omega ab\sqrt{(\rho h/D)}$ for the doubly-connected super-elliptical and rectangular fully clamped shallow shells with a circular cutout ($\nu = 0.3$, a/b = 1.0, a'/b' = 1.0, a'/a = 0.3, a/h = 100.0 and $n_2 = 1$)

		p			Mode sequence number								
n_1	и	v	w	1	2	3	4	5	6	7	8		
	10	10	10	173.99	174.00	197.95	197.95	222.46	245.92	245.93	289.36		
	10	10	12	173.46	173.46	197.15	197.15	222.28	245.52	245.52	289.22		
	10	10	14	172.75	172.75	196.39	196.39	222.23	245.24	245.24	289.15		
	10	10	16	171.95	171.95	195.86	195.86	222.22	244.95	244.95	289.12		
	10	10	18	171.21	171.22	195.56	195.56	222.21	244.66	244.66	289.11		
	10	12	18	169.46	170.02	195.13	195.21	218.80	242.84	242.98	288.36		
	10	14	18	168.73	169.43	194.79	194.88	217.26	241.65	241.78	288.08		
1	10	16	18	168.43	169.17	194.58	194.65	216.63	240.99	241.07	287.96		
	10	18	18	168.30	169.05	194.46	194.51	216.37	240.66	240.70	287.92		
	10	20	18	168.24	169.01	194.40	194.43	216.25	240.51	240.53	287.90		
	12	20	18	166.99	167.40	194.09	194.11	213.71	238.15	238.17	287.47		
	14	20	18	166.52	166.69	193.82	193.83	212.55	236.67	236.69	287.29		
	16	20	18	166.35	166.40	193.63	193.64	212.07	235.94	235.95	287.22		
	18	20	18	166.25	166.26	193.53	193.53	211.88	235.61	235.62	287.20		
	20	20	18	166.17	166.18	193.48	193.48	211.81	235.44	235.44	287.19		
	10	10	10	173.67	181.09	195.10	195.10	231.81	243.17	243.22	262.17		
	10	10	12	173.45	180.78	194.98	194.98	231.57	234.12	234.12	261.13		
	10	10	14	173.38	180.59	194.77	194.77	231.10	233.60	233.60	261.04		
	10	10	16	173.27	180.38	194.45	194.45	230.92	233.45	233.45	261.01		
	10	10	18	173.16	180.12	194.06	194.06	230.85	233.26	233.26	260.97		
	10	12	18	168.32	177.15	193.78	193.92	224.91	231.36	231.68	260.24		
	10	14	18	165.90	174.83	193.46	193.70	221.17	230.13	230.85	259.95		
10	10	16	18	164.53	173.04	193.17	193.39	218.92	229.18	230.17	259.86		
	10	18	18	163.82	171.89	192.93	193.02	217.57	228.53	229.66	259.80		
	10	20	18	163.48	171.22	192.68	192.77	216.81	228.13	229.30	259.76		
	12	20	18	159.09	168.07	192.53	192.69	211.62	226.14	226.95	259.47		
	14	20	18	156.82	165.57	192.35	192.54	208.23	224.62	224.98	259.35		
	16	20	18	155.71	163.79	192.15	192.32	206.18	223.28	223.40	259.29		
	18	20	18	155.20	162.74	191.97	192.07	205.03	222.22	222.26	259.23		
	20	20	18	154.98	162.23	191.83	191.83	204.40	221.53	221.53	259.18		
	10	10	10	162.60	171.10	193.93	193.93	217.94	229.14	229.14	259.66		
	10	10	12	162.41	170.78	193.50	193.50	217.72	228.94	228.94	259.61		
	10	10	14	162.17	170.35	193.04	193.04	217.65	228.71	228.71	259.58		
	10	10	16	161.89	169.88	192.63	192.63	217.62	228.50	228.50	259.56		
	10	10	18	161.58	169.39	192.31	192.31	217.61	228.31	228.31	259.54		
	10	12	18	159.19	167.58	191.99	192.10	214.12	226.77	227.33	259.44		
	10	14	18	157.80	166.52	191.69	191.85	211.75	225.64	226.51	259.36		
∞	10	16	18	157.13	165.75	191.47	191.56	210.51	224.86	225.83	259.32		
	10	18	18	156.70	165.36	191.32	191.32	209.77	224.37	225.31	259.28		
	10	20	18	156.46	165.12	191.10	191.21	209.42	224.10	224.98	259.25		
	12	20	18	154.57	162.93	190.90	191.05	206.44	222.58	222.88	259.17		
	14	20	18	153.69	161.44	190.68	190.84	204.72	221.25	221.27	259.11		
	16	20	18	153.27	160.60	190.51	190.62	203.74	220.17	220.24	259.05		
	18	20	18	153.06	160.16	190.37	190.43	203.27	219.52	219.53	258.99		
	20	20	18	152.88	159.96	190.27	190.27	203.00	219.12	219.12	258.93		

boundary conditions:

• for the SF shell

$$U|_{\xi = \xi_{e}, \eta = \eta_{e}} = 0, \quad V|_{\xi = \xi_{e}, \eta = \eta_{e}} = 0, \quad W|_{\xi = \xi_{e}, \eta = \eta_{e}} = 0$$
(16a-16c)

$$\left. \frac{\partial W}{\partial n_r} \right|_{\xi = \xi_r, \eta = \eta_r} \neq 0 \tag{16d}$$

• for the CF shell

$$U|_{\xi = \xi_{e}, \eta = \eta_{e}} = 0, \quad V|_{\xi = \xi_{e}, \eta = \eta_{e}} = 0, \quad W|_{\xi = \xi_{e}, \eta = \eta_{e}} = 0$$
(17a-17c)

$$\left. \frac{\partial W}{\partial n_r} \right|_{\xi = \xi_e, \eta = \eta_e} = 0, \tag{17d}$$

$E = 10^7 \text{ lb}_{\text{f}}/\text{in}^2$, $\rho = 0.096 \text{ lb}_{\text{m}}/\text{in}^2$, $v = 0.33$, $R_y = 30.0$ in, $h = 0.013$ in, $a = 3.0$ in, $b = 4.0$ in											
Mode sequence number											
Reference	1	2	3	4	5	6	7	8	9	10	
Experiment (Deb Nath, 1969)	814	940	1260	1306	1452	1802	1770	2100	2225	2280	
ERR (Webster, 1968)	870	958	1288	1364	1440	1753	1795	2057	2220	2300	
FET (Olson and Lindberg, 1971)	870	958	1288	1363	1440	1756	1780	2056	2222	2295	
FER (Deb Nath, 1969)	890	973	1311	1371	1454	1775	1816	2068	2234	2319	
K (Deb Nath and Petyt, 1969)	890	966	1295	1375	1450	1745	_			_	
FSM (Cheung <i>et al.</i> , 1989)	874	963	1298	1369	_	_	_			_	
$pb-2$ method $(n_1 = 10)$	870.12	958.34	1288.7	1364.1	1440.3	1753.9	1780.0	2056.5	2219.2	2289.7	
$pb-2 \text{ method } (n_1 = \infty)$	870.10	958.21	1288.6	1364.0	1440.2	1753.7	1779.9	2056.4	2218.9	2289.2	

Table 2(a). Comparison of frequencies (in hertz) for the fully clamped aluminium cylindrical (singly-curved) shallow shell without cutout ($R_x = \infty$, a'/a = b'/b = 0)

								Mode s	equence			
a/b	v	R_x/R_y	a/R_x	Reference	SS-1	SS-2	SA-1	SA-2	AS-1	AS-2	AA- 1	AA-2
			0	Leissa (1973b) Gorman (1978) Leissa and Narita (1984) <i>pb</i> -2 method	19.789 19.60 19.596 19.523	24.432 24.27 24.271 24.381	35.024 34.80 34.801 34.947	61.526 61.08 61.111 61.255	35.024 34.80 34.801 34.947	61.526 61.08 61.111 61.255	13.489 13.47 13.468 13.523	 69.279 69.268
		-1	0.2	Leissa and Narita (1984) pb-2 method	24.741 24.851	52.574 52.563	36.957 37.145	77.063 77.217	36.957 37.145	77.063 77.217	13.462 13.517	77.647 78.325
			0.5	Leissa and Narita (1984) pb-2 method	25.695 25.781	64.262 64.577	38.923 39.131	103.77 104.16	38.923 39.131	103.77 104.16	13.425 13.481	79.401 80.055
1	0.3	0	0.2	Leissa and Narita (1984) pb-2 method	21.904 21.942	38.473 38.640	34.852 35.003	75.298 75.552	37.643 37.807	61.154 61.283	13.483 13.539	70.952 70.965
			0.5	Leissa and Narita (1984) pb-2 method	22.074 22.119	54.329 54.697	34.870 35.029	98.220 98.412	48.711 48.939	61.326 61.391	13.508 13.564	72.479 72.533
		1	0.2	Leissa and Narita (1984) pb-2 method	19.757 19.755	42.353 42.675	35.880 36.013	73.890 74.172	35.880 36.013	73.890 74.172	13.524 13.580	69.598 69.573
			0.5	Leissa and Narita (1984) pb-2 method	19.997 19.988	49.623 49.974	36.862 36.994	87.725 87.875	36.862 36.994	87.725 87.875	13.576 13.633	70.723 70.635
	0.333		0	Gorman (1978) Leissa and Narita (1984) <i>pb</i> -2 method	19.22 19.224 19.224	24.42 24.423 24.535	34.23 34.233 34.376	60.92 60.951 61.099	34.23 34.233 34.376	60.92 60.951 61.099	13.17 13.169 13.223	68.12 68.142 68.132
2	0.333		0	Gorman (1978) Leiss and Narita (1984) <i>pb-</i> 2 method	21.25 21.241 21.284	87.62 87.696 87.795	57.34 57.350 57.610	158.2 169.28 158.77	59.07 59.087 59.150	103.3 103.27 103.80	25.97 25.974 26.075	99.92 99.938 100.37

Table 2(b). Comparison of frequencies $\omega a^2 \sqrt{(\rho h/D)}$ for the completely free shallow shells of rectangular planform without cutout (a/h = 100 and a'/a = b'/b = 0) where the *pb*-2 solution employs a super-elliptical shell with $n_1 \doteq 10$

where ξ_e and η_e are the circumferential coordinates and n_r is the direction normal to the circumference in the xy-plane.

Accordingly, the power to the basic functions for the transverse deflection $(\alpha = w)$ is set to 0, 1 or 2 corresponding to a free, simply supported or clamped edge. For the in-plane deflections $(\alpha = u \text{ and } v)$, the power is set to zero for a free edge and one for either a simply supported or clamped edge. The in-plane deflection gradients are always non-zero $(\partial u/\partial n_r \neq 0, \partial u/\partial n_s \neq 0, \partial v/\partial n_r \neq 0$ and $\partial v/\partial n_s \neq 0$, where n_r and n_s are the directions normal and tangential to the outer and inner peripheries of shells) regardless of the boundary constraints.

For the doubly-connected super-elliptical shell, the basic functions can be represented by

$$\phi_{1}^{\alpha} = \left[(2\xi)^{2n_{1}} + (2\eta)^{2n_{1}} - 1 \right]^{\gamma_{1}^{\alpha}} \left[\left(\frac{2a\xi}{a'} \right)^{2n_{2}} + \left(\frac{2b\eta}{b'} \right)^{2n_{2}} - 1 \right]^{\gamma_{2}^{\alpha}}$$

$$n_{1}, n_{2} = 1, 2, 3, \dots, \infty, \quad \alpha = u, v \text{ and } w,$$
(18)

where $\gamma_1^{\alpha} = 1$ or 2 and $\gamma_2^{\alpha} = 0$ corresponding to the SF or CF shell. The integers n_1 and n_2 are the powers for the outer and inner super-elliptical functions. For shells having a rectangular outer boundary $(n_1 = \infty)$ and a super-elliptical inner periphery, the basic functions are

$$\phi_{1}^{\alpha} = \left[(\xi^{2} - 0.25)(\eta^{2} - 0.25) \right]^{\gamma_{1}^{\alpha}} \left[\left(\frac{2a\xi}{a'} \right)^{2n_{2}} + \left(\frac{2b\eta}{b'} \right)^{2n_{2}} - 1 \right]^{\gamma_{2}^{\alpha}}$$
(19)
$$n_{1}, n_{2} = 1, 2, 3, \dots, \infty, \quad \alpha = u, v \text{ and } w,$$

where $\gamma_1^{\alpha} = 1$ or 2 and $\gamma_2^{\alpha} = 0$ as explained earlier.

The two-dimensional polynomial $\sum_{i=1}^{m} f_i(\xi, \eta)$, as mentioned in eqn (13) can be expressed as

$$\sum_{i=1}^{m} f_i(\xi, \eta) = \sum_{q=0}^{p} \sum_{i=0}^{q} \xi^{q-i} \eta^i$$
(20)

with m and p related by

$$m = \frac{(p+1)(p+2)}{2},$$
(21)

where p is the degree set of the two-dimensional polynomials.

3. NUMERICAL STUDIES

Convergence and comparison of eigenvalues are performed to justify the accuracy and validity of the present analysis and numerical algorithm. For descriptive purposes, two kinds of boundary conditions are studied, namely the SF shell (simply supported at the outer edge and free at the inner edge) and the CF shell (fully clamped at the outer edge and free at the inner edge). The outer periphery has super-elliptical powers $2n_1 = 2$, 10, 20 and ∞ whereas the inner cutout is circular $(2n_2 = 2)$. The effect of Gaussian curvature $(1/R_xR_y)$ is investigated by varying the curvature ratio (R_y/R_x) . New data are presented for wide ranges of shallowness ratios (a/R_y) and curvature ratios. The Poisson ratio is fixed at v = 0.3, thickness ratio a/h = 100.0, aspect ratio a/b = 1, cutout ratios a'/a = 0.3 and a'/b' = 1.0.

3.1. Convergence and comparison studies

Since the *pb*-2 shape functions adopted are orthogonally generated two-dimensional polynomials which satisfy the geometric boundary conditions, the application of the Ritz procedure in the present analysis ensures the upper bound convergence of eigenvalue to the exact solutions. In order to determine the lowest degree of polynomial required to achieve satisfactory accuracy, convergence tests have been carried out with the results given in Tables 1(a) and 1(b). The degrees of polynomial for u, v and w for various n_1 are increased from 10 and onwards. The upper bound nature of the Ritz formulation is clearly shown in the convergence tables where the eigenvalues decrease as the polynomial degrees increase. It is found that the degrees 20, 20 and 18 for u, v and w are sufficient to furnish the acceptable accurate solutions within the engineering interest.

Table 2(a) shows the comparison of frequencies (in hertz) for a fully clamped aluminium cylindrical shallow shell without cutout. The shell geometric specifications and mechanical properties of the experimental specimen by Deb Nath (1969) are listed in the same table. Results of Petyt (1971) and the finite strip results of Cheung *et al.* (1989) are reproduced and compared to the present *pb*-2 solutions. In this comparison study, ERR refers to the extended Rayleigh-Ritz method of Webster (1968); FET, the triangular finite element method of Olson and Lindberg (1971); FER, the rectangular finite element method of Deb Nath (1969); K, the Kantorovich method of Kantorovich and Krylov (1964) which was applied by Deb Nath and Petyt (1969) and FSM, the finite strip method of Cheung *et al.* (1989). The present *pb*-2 method is used to provide two sets of solutions. The first set

			Mode sequence number								
n_1	b/R_y	R_y/R_x	1	2	3	4	5	6	7	8	
	0.0	all	18.663	51.933	51.933	97.092	97.092	148.20	155.50	155.50	
	0.1	-1.0 -0.5 0.0 0.5 1.0	38.900 33.758 34.404 40.587 50.256	60.474 55.375 54.189 57.178 63.752	60.474 59.822 60.171 61.504 63.752	100.09 98.971 98.582 98.930 100.00	101.35 99.671 98.871 98.992 100.00	150.74 149.92 149.97 150.87 152.63	157.88 157.01 156.80 157.25 158.35	157.88 157.03 156.81 157.25 158.35	
I	0.3	-1.0 -0.5 0.0 0.5 1.0	102.28 77.417 69.329 88.275 119.92	105.71 84.898 86.468 106.47 119.92	105.71 102.21 104.11 111.16 122.07	121.28 112.74 109.54 112.16 122.07	130.05 116.99 110.30 112.72 136.65	170.24 164.15 165.10 170.05 179.04	175.09 167.71 166.04 170.14 179.04	175.09 168.61 166.18 172.37 187.46	
	0.5	-1.0 -0.5 0.0 0.5 1.0	154.52 108.14 91.228 128.57 149.08	158.23 133.38 120.81 129.72 149.08	158.23 135.50 127.64 133.20 189.81	160.79 141.04 137.47 167.09 189.81	172.09 149.75 152.85. 168.54 205.83	203.67 188.06 179.00 190.68 212.29	203.67 188.78 184.94 193.52 212.29	206.74 193.75 197.41 216.75 254.29	
	0.0	all	19.109	47.625	47.626	75.059	94.274	112.40	125.24	125.24	
	0.1	-1.0 -0.5 0.0 0.5 1.0	39.952 34.581 34.964 40.961 50.540	56.993 51.286 49.943 53.322 60.629	56.993 56.445 56.892 58.310 60.629	79.408 77.865 77.498 78.318 80.277	97.989 96.472 95.777 96.031 97.102	116.53 115.20 115.13 116.25 118.64	127.76 126.37 126.26 127.42 129.83	127.76 127.53 127.81 128.58 129.84	
5	0.3	-1.0 -0.5 0.0 0.5 1.0	103.31 74.032 65.432 86.004 111.03	103.31 86.389 87.386 99.544 116.48	103.46 97.107 94.296 106.32 121.28	107.48 100.61 102.09 106.72 121.28	123.33 109.17 103.12 110.44 132.43	147.27 136.34 135.14 144.05 161.10	147.31 138.91 139.62 147.33 161.10	147.31 144.45 146.51 152.15 167.09	
	0.5	- 1.0 - 0.5 0.0 0.5 1.0	146.20 104.75 87.909 122.66 144.92	150.52 125.66 108.89 127.44 147.48	150.52 126.10 119.04 128.13 188.63	158.12 135.26 134.55 160.61 188.64	160.90 136.96 138.85 161.07 195.65	185.65 169.30 167.88 181.04 205.65	185.65 172.43 169.16 182.83 205.65	199.51 182.12 177.85 195.27 237.16	

Table 3(a). Frequency parameters $\lambda = \omega ab \sqrt{(\rho h/D)}$ for the doubly-connected super-elliptical $(n_1 = 1, 5 \text{ and } n_2 = 1)$ simply supported shallow shells $(\nu = 0.3, a/b = 1.0, a'/b' = 1.0, a'/a = 0.3 \text{ and } a/h = 100.0)$

Table 3(b). Frequency parameters $\lambda = \omega ab \sqrt{(\rho h/D)}$ for the doubly-connected super-elliptical and rectangular $(n_1 = 10, \infty \text{ and } n_2 = 1)$ simply supported shallow shells (v = 0.3, a/b = 1.0, a'/b' = 1.0, a'/a = 0.3 and a/h = 100.0)

			Mode sequence number								
\boldsymbol{n}_1	b/R_y	R_y/R_x	1	2	3	4	5	6	7	8	
	0.0	all	19.443	48.112	48.112	75.646	94.343	112.94	125.82	125.82	
		-1.0	40.122	57.383	57.383	79.954	98.044	117.07	128.33	128.33	
		-0.5	34.771	51.733	56.841	78.427	96.536	115.74	126.94	128.10	
	0.1	0.0	35.146	50.408	57.288	78. 066	95.848	115.67	126.83	128.38	
		0.5	41.110	53.759	58.700	78.884	96.107	116.79	128.00	129.15	
		1.0	50.655	61.008	61.008	80.833	97.183	119.18	130.40	130.40	
		-1.0	103.46	103.46	103.63	107.83	123.31	147.73	147.82	147.82	
		-0.5	74.321	86.533	97.527	100.76	109.25	136.89	139.35	144.96	
10	0.3	0.0	65.797	87.521	94.761	102.21	103.28	135.71	140.06	147.01	
		0.5	86.286	100.02	106.41	106.91	110.61	144.62	147.77	152.64	
		1.0	111.49	116.66	121.47	121.47	132.68	161.63	161.63	167.40	
		-1.0	146.39	150.62	150.62	158.57	160.81	185.98	185.98	199.61	
		-0.5	104.96	125.94	126.14	135.61	137.15	169.63	172.77	182.34	
	0.5	0.0	88.207	109.03	119.41	134.93	139.14	168.20	169.48	178.68	
		0.5	122.88	127.66	128.58	161.09	161.36	181.47	183.16	196.22	
		1.0	145.28	148.01	188.80	188.80	196.27	206.34	206.34	237.95	
	0.0	all	19.515	47.595	47.595	75.898	94.092	113.32	125.50	125.50	
		-1.0	40.020	56.865	56.865	80.172	97.763	117.40	128.02	128.02	
		-0.5	34.709	51.214	56.333	78.652	96.270	116.08	126.65	127.77	
	0.1	0.0	35.094	49.898	56.791	78.279	95.586	116.02	126.53	128.04	
		0.5	41.034	53.269	58.217	79.068	95.832	117.13	127.69	128.81	
		1.0	50.536	60.537	60.537	80.969	96.884	119.50	130.07	130.07	
		-1.0	102.72	102.72	103.08	107.87	122.82	147.57	147.57	147.84	
		-0.5	73.743	86.102	97.589	100.06	108.98	136.77	139.40	144.52	
∞	0.3	0.0	65.295	87.098	94.728	102.01	102.65	135.57	140.09	146.52	
		0.5	85.837	99.783	106.03	106.42	110.06	144.31	147.87	152.14	
		1.0	110.99	116.01	120.96	120.96	132.07	161.05	161.05	167.52	
		-1.0	146.23	149.42	149.42	157.46	159.96	185.83	185.83	199.50	
		-0.5	104.21	125.80	125.88	134.52	136.25	169.56	172.23	181.22	
	0.5	0.0	87.633	108.89	119.04	133.79	138.41	166.73	169.26	177.11	
		0.5	122.27	127.12	127.79	159.94	160.52	180.95	182.04	194.13	
		1.0	144.05	146.73	188.10	188.10	195.14	204.74	204.74	235.96	

of solutions is obtained by assigning $n_1 = 10$ which is in close resemblance with a rectangular cylindrical shell as shown in Fig. 1. The second set of solutions $(n_1 = \infty)$ is for the rectangular shell.

The implication of comparison shown in Table 2(a) is two-fold and far-reaching. Firstly, it demonstrates the reliability of the present method of analysis with respect to a variety of other computational solutions as well as the experimental results of Deb Nath (1969). Close agreement between the various methods has been observed especially between the solutions of ERR (Webster, 1968), FET (Olson and Lindberg, 1971) and the present *pb*-2 method. Secondly, it provides the confirmation of analytical and numerical consistency that the results for super-elliptical shells with a high super-elliptical power $(n_1 \ge 10)$ approach the rectangular shell solutions.

Table 2(b) further compares the solutions of a free shallow shell of rectangular planform with various other sources. The flat plate results $(a/R_x = 0)$ of Leissa (1973b) and Gorman (1978) are also included. SS-1 and SS-2 denote the first and second symmetricsymmetric modes with respect to the x- and y-axis. SA, AS and AA are the corresponding symmetric-antisymmetric, antisymmetric-symmetric and antisymmetric-antisymmetric modes. The results of the present pb-2 method are generated using a super-elliptical shell model with $n_1 = 10$. The non-dimensional frequency parameter presented here is expressed in terms of $\omega a^2 \sqrt{(\rho h_0/D_0)}$. Good agreement between the results is again achieved. Consequently, we can conclude that a super-elliptical shell model with a high super-elliptical power $(n_1 \ge 10)$ can well simulate a rectangular shell so far as its vibratory characteristics are concerned.

3.2. Results and discussion

New sets of data for selective shell configurations are presented in Tables 3(a), 3(b), 4(a) and 4(b). Tables 3(a) and 3(b) show the non-dimensional frequency parameter $\lambda = \omega ab \sqrt{(\rho h_0/D_0)}$ for a simply supported shallow shell with various outer super-elliptical powers $n_1 = 1, 5, 10$ and ∞ and a circular cutout $n_2 = 1$. Tables 4(a) and 4(b) present the corresponding data for a fully clamped shallow shell. For all cases, the shallowness ratio b/R_y ranges from 0.0 to 0.5 and the curvature ratio R_y/R_x from -0.5 to 0.5. A negative curvature ratio represents a hyperbolic paraboloidal shell whereas a positive R_y/R_x represents a spherical shell.

Note that cases where $b/R_y \neq 0$ and $R_y/R_x = 0$ correspond to cylindrical shells with shallowness ratio $a/R_x = 0$. Furthermore, λ is completely independent of the curvature ratio for $b/R_y = 0$ and $R_y/R_x \ll \infty$ because it corresponds to a flat plate with infinite radii of curvature. The consistency of results for $n_1 = 10$ and $n_1 = \infty$ as exemplified clearly in the previous section is again observed here for both simply supported and fully clamped shells [see Tables 3(b) and 4(b)].

In Tables 3(a) and 3(b), it is observed that the fundamental frequencies increase significantly for deeper shells (higher b/R_y) having the same boundary conditions. For example, the fundamental λ ($n_1 = 1$ and $R_y/R_x = -1.0$) increases from 38.900 for

Table 4(a). Frequency parameters $\lambda = \omega ab \sqrt{(\rho h/D)}$ for the doubly-connected super-elliptical $(n_1 = 1, 5 \text{ and } n_2 = 1)$ fully clamped shallow shells (v = 0.3, a/b = 1.0, a'/b' = 1.0, a'/a = 0.3 and a/h = 100.0)

			Mode sequence number									
n_1	b/R_y	R_y/R_x	1	2	3	4	5	6	7	8		
	0.0	all	45.699	78.728	78.731	131.37	131.38	197.13	197.13	207.00		
		-1.0	55.884	83.910	83.913	133.25	134.04	198.71	198.72	208.82		
		-0.5	52.815	80.707	83.603	132.53	132.98	198.13	198.13	208.24		
	0.1	0.0	53.140	80.049	83.921	132.26	132.46	197.97	197.97	208.31		
		0.5	56.813	82.006	84.863	132.43	132.48	198.23	198.23	209.02		
		1.0	63.229	86.398	86.402	133.04	133.04	198.91	198.91	210.38		
		-1.0	105.80	116.97	116.97	147.31	153.50	210.71	210.71	223.01		
		-0.5	90.735	94.984	114.88	141.40	144.78	205.64	205.92	218.21		
1	0.3	0.0	89.738	92.055	117.00	139.04	140.23	204.26	204.34	218.97		
		0.5	104.42	109.77	123.13	140.44	140.68	206.59	206.61	225.06		
		1.0	132.46	132.46	136.84	145.37	145.38	212.30	212.30	236.68		
		-1.0	161.64	162.32	162.32	171.64	185.63	232.14	232.14	249.61		
		-0.5	118.11	134.82	157.27	157.38	164.32	219.68	220.32	238.18		
	0.5	0.0	105.72	134.26	151.13	154.05	161.70	215.26	216.27	240.86		
		0.5	138.06	152.03	154.57	169.86	174.94	221.38	221.99	256.60		
		1.0	166.17	166.18	193.48	193.48	211.81	235.44	235.44	287.19		
	0.0	all	39.433	71.310	71.312	104.16	125.67	156.63	162.17	162.18		
		-1.0	51.603	77.184	77.185	106.70	128.10	159.56	163.84	163.85		
		-0.5	47.947	73.448	76.936	105.77	127.13	158.59	162.93	163.68		
	0.1	0.0	48.098	72.635	77.309	105.51	126.68	158.55	162.86	163.86		
		0.5	52.037	74.858	78.292	105.92	126.79	159.42	163.62	164.37		
		1.0	58.976	79.860	79.861	106.98	127.42	161.21	165.20	165.21		
		-1.0	105.51	112.79	112.79	124.98	145.85	176.98	176.99	182.10		
		-0.5	88.610	89.585	111.20	117.76	136.84	169.44	174.86	175.10		
5	0.3	0.0	82.353	90.090	113.65	115.55	132.28	168.65	1/5.15	1/0.50		
		0.5	98.609	107.36	118.62	119.84	134.28	1/4./9	180.52	181.70		
		1.0	126.28	128.98	128.95	155.75	140.51	160.95	100.94	190.10		
		-1.0	154.29	157.57	157.57	160.74	175.25	202.83	202.84	223.63		
		-0.5	112.58	135.24	138.01	151.19	151.73	186.92	195.24	207.19		
	0.5	0.0	98.452	132.46	134.82	158.91	120.4/	105.00	197.02	200.71		
		0.5	155.42	158.94	143.90	104.01	203.01	220.04	200.42	224.10		
		1.0	154.53	101.77	191.91	191.31	203.91	220.70	220.90	237.30		

			Mode sequence number								
n	b/R_y	R_y/R_x	1	2	3	4	5	6	7	8	
	0.0	all	39.458	71.721	71.722	104.12	125.84	156.33	162.18	162.18	
		-1.0	51.660	77.580	77.581	106.67	128.26	159.28	163.85	163.85	
	0.1	-0.5	47.993	73.852	77.701	105.74	127.29	158.30	162.94	163.09	
	0.1	0.0	48.140	75.041	79 690	105.48	120.04	150.20	162.67	164 38	
		1.0	52.082 59.030	80.242	80.243	105.90	120.90	160.93	165.23	165.23	
		-1.0	105.70	113.15	113.15	124.98	145.99	176.99	176.99	181.94	
		-0.5	88.987	89.741	111.56	117.76	136.96	169.41	174.68	175.15	
10	0.3	0.0	82.728	90.237	114.00	115.59	132.41	168.65	174.96	176.59	
		0.5	98.946	107.52	118.72	120.17	134.49	1/4.86	180.66	181.51	
		1.0	120.40	129.20	129.20	133.90	140.59	187.14	107.14	193.90	
		-1.0	154.33	157.95	157.95	161.12	175.36	202.85	202.85	223.62	
	0.5	-0.5	112.95	135.57	138.05	151.25	152.07	186.88	195.35	207.15	
	0.5	0.0	98.805	132.39	135.27	158.89	100.79	185.04	206.80	208.04	
		1.0	153.73	162 23	191.83	191.83	204 40	221.53	200.80	2259.18	
	0.0	all	39.360	69.417	69.418	103.57	124.72	156.15	160.47	160.47	
		-10	51 470	75 364	75 364	106.12	127.11	159.09	162.19	162.19	
		-0.5	47.833	71.580	75.124	105.18	126.15	158.11	161.28	161.99	
	0.1	0.0	47.988	70.766	75.514	104.91	125.70	158.07	161.20	162.16	
		0.5	51.917	73.039	76.524	105.30	125.81	158.94	161.97	162.68	
		1.0	58.833	78.127	78.127	106.34	126.43	160.73	163.56	163.56	
		-1.0	105.09	111.08	111.08	124.41	144.63	175.62	175.62	181.70	
		-0.5	86.856	89.233	109.55	117.16	135.77	168.08	173.50	174.36	
∞	0.3	0.0	80.615	89.731	112.10	114.87	131.27	167.29	174.61	174.87	
		0.5	97.119	106.98	117.80	118.42	133.17	173.38	178.99	181.20	
		1.0	125.28	127.63	127.63	133.29	139.02	185.50	185.50	195.64	
		-1.0	153.68	155.53	155.53	159.91	173.61	201.98	201.98	223.40	
	0.5	-0.5	110.86	134.45	137.35	149.69	150.04	186.23	193.82	206.66	
	0.5	0.0	90.819	131.39	135.52	158.51	154.56	184.25	196.66	208.06	
		0.5	152.15	157.72	144.57	103.21	203.00	2193.31	203.13	223.39	
		1.0	152.00	137.70	170.27	170.27	205.00	217.12	217.12	230.93	

Table 4(b). Frequency parameters $\lambda = \omega ab \sqrt{(\rho h/D)}$ for the doubly-connected super-elliptical and rectangular $(n_1 = 10, \infty \text{ and } n_2 = 1)$ fully clamped shallow shells (v = 0.3, a/b = 1.0, a'/b' = 1.0, a'/a = 0.3 and a/h = 100.0)

 $b/R_y = 0.1$ to 154.54 for $b/R_y = 0.5$ in Table 3(a). The similar characteristic can also be observed in Tables 4(a) and 4(b). The fully clamped shells also provide a relatively higher fundamental λ with respect to the simply supported shell. The effect of R_y/R_x on the fundamental λ can be readily seen in the tables where it initially decreases and then increases when R_y/R_x changes from -1 to 1. The lowest fundamental λ generally corresponds to a negative R_y/R_x .

A set of selected vibration mode shapes is also included for illustrative purposes. Figures 2(a) and 2(b) illustrate the vibration mode shapes of simply supported superelliptical shells having $n_1 = 1$ and 10 (v = 0.3, a/b = 1, a'/a = 0.3, a'/b' = 1, a/h = 100 and $n_2 = 1$) with a free circular cutout. Figures 3(a) and 3(b) are the corresponding mode shapes of a fully clamped shell at the outer edge. The shaded regions represent negative deflection amplitudes and the unshaded regions otherwise. The lines of demarcation are the nodal lines having zero deflection. It is clear that these modes can be classified into SS, SA, AS and AA modes with respect to the x- and y-axis. There are more nodal lines for higher modes of vibration as demonstrated in these figures.

4. CONCLUSIONS

A global continuum approach for free vibration of perforated doubly-curved shallow shells with rounded corners has been presented. The outer and cutout peripheries of a shell were described by super-elliptical functions having different powers. The analysis accounts

Fig. 2(a). Vibration mode shapes for a doubly-connected simply supported circular shell with a completely free circular cutout (v = 0.3, a/b = 1.0, a'/b' = 1.0, a'/a = 0.3, b/h = 100.0, $b/R_y = 0.5$ and $n_1 = n_2 = 1$).

Fig. 2(b). Vibration mode shapes for a doubly-connected simply supported super-elliptical shell with a completely free circular cutout (v = 0.3, a/b = 1.0, a'/b' = 1.0, a'/a = 0.3, b/h = 100.0, $b/R_v = 0.5$, $n_1 = 10$ and $n_2 = 1$).

Fig. 3(a). Vibration mode shapes for a doubly-connected fully clamped circular shell with a completely free circular cutout (v = 0.3, a/b = 1.0, a'/b' = 1.0, a'/a = 0.3, b/h = 100.0, $b/R_y = 0.5$ and $n_1 = n_2 = 1$).

Fig. 3(b). Vibration mode shapes for a doubly-connected fully clamped super-elliptical shell with a completely free circular cutout (v = 0.3, a/b = 1.0, a'/b' = 1.0, a'/a = 0.3, b/h = 100.0, $b/R_y = 0.5$, $n_1 = 10$ and $n_2 = 1$).

for general types of boundary constraints. The pb-2 shape functions adopted are sets of orthogonally generated two-dimensional polynomials. These admissible shape functions are kinematically oriented and satisfy the geometric boundary conditions at the outset.

A comprehensive convergence study has been performed to demonstrate the upper bound eigenvalues and to determine the degrees of polynomial required to ensure a satisfactory convergence. Comparison of frequencies with other experimental and computational results has also been presented. Selected numerical examples included are the simply supported and fully clamped shells (the outer peripheries) with a free, circular inner cutout. The effects of outer super-elliptical power (n_1) , shallowness ratio and curvature ratio (which determines whether a shell is hyperbolic paraboloidal, cylindrical or spherical) have been carefully examined. It has been shown that the natural frequencies of a superelliptical shell with a high outer super-elliptical power approach the solutions of a rectangular shell having the same geometrical and mechanical properties [see Sections 3.1 and 3.2 or Tables 2, 3(b) and 4(b)]. It has also been justified in the numerical studies that a minimum fundamental frequency exists corresponding to a shell with a negative curvature ratio (a hyperbolic paraboloidal shell).

REFERENCES

Cheung, Y. K., Li, W. Y. and Tham, L. G. (1989). Free vibration analysis of singly curved shell by spline finite strip method. J. Sound Vibr. 128, 411-422.

Deb Nath, J. M. (1969). Dynamics of rectangular curved plates. Ph.D. thesis, University of Southampton.

- Deb Nath, J. M. and Petyt, M. (1969). Institute of Sound and Vibration Research Technical Report No. 19. Application of the method of Kantorovich to the solution of problems of free vibration of singly curved rectangular plates including the presence of membrane stresses.
- Gorman, D. J. (1978). Free vibration analysis of the completely free rectangular plate by the method of superposition. J. Sound Vibr. 57, 437-447.
- Irie, T., Yamada, G. and Sonoda, M. (1983). Natural frequencies of square membrane and square plate with rounded corners. J. Sound Vibr. 86, 442-448.
- Kantorovich, L. V. and Krylov, I. V. (1964). Approximate Methods of Higher Analysis. Interscience, New York. Leissa, A. W. (1973a). Vibration of shells, NASA SP-288.

Leissa, A. W. (1973b). The free vibration of rectangular plates. J. Sound Vibr. 31, 257-259.

Leissa, A. W., Lee, J. K. and Wang, A. J. (1983). Vibration of cantilevered doubly-curved shallow shells. Int. J. Solids Structures 19, 411-424.

- Leissa, A. W. and Narita, Y. (1984). Vibrations of completely free shallow shells of rectangular planform. J. Sound Vibr. 96, 207-218.
- Liew, K. M. (1993). Treatment of over-restrained boundaries for doubly connected plates of arbitrary shape in vibration analysis. *Int. J. Solids Structures* 30, 337-347.
 Liew, K. M. and Lim, C. W. (1994a). Vibratory characteristics of cantilevered rectangular shallow shells of
- Liew, K. M. and Lim, C. W. (1994a). Vibratory characteristics of cantilevered rectangular shallow shells of variable thickness. *AIAA J.*, to be published.

Liew, K. M. and Lim, C. W. (1994b). Flexural vibration of doubly-curved shallow shells. Acta Mech., to be published.

Lim, C. W. and Liew, K. M. (1994). A *pb*-2 Ritz formulation for flexural vibration of shallow cylindrical shells of rectangular planform. J. Sound Vibr., to be published.

Narita, Y. and Leissa, A. W. (1986). Vibrations of completely free shallow shells of curvilinear planform. ASME J. appl. Mech. 53, 647-651.

Olson, M. D. and Lindberg, G. M. (1971). Dynamic analysis of shallow shell with a doubly-curved triangular finite element. J. Sound Vibr. 19, 299-318.

Petyt, M. (1971). Vibration of curved plates. J. Sound Vibr. 15, 381-395.

- Wang, C. M., Wang, L. and Liew, K. M. (1993). Vibration and buckling of super-elliptical plates. J. Sound Vibr., to be published.
- Webster, J. J. (1968). Free vibrations of rectangular curved panels. Int. J. Mech. Sci. 10, 571-582.

APPENDIX A

Minimization of the energy expressions as given in eqn (11) is described as follows:

$$\frac{\partial (\mathcal{U}_{s})_{\max}}{\partial C_{i}^{u}} = \frac{12abD}{h^{2}} \left[\frac{1}{a^{2}} \sum_{j=1}^{m} C_{j}^{u} \mathscr{I}_{uluj}^{1010} + \frac{v}{ab} \sum_{j=1}^{m} C_{j}^{v} \mathscr{I}_{ulvj}^{1001} + \frac{1}{a} \left(\frac{1}{R_{x}} + \frac{v}{R_{y}} \right) \sum_{j=1}^{m} C_{j}^{u} \mathscr{I}_{ulvj}^{1000} + \frac{1}{ab} \sum_{j=1}^{m} C_{j}^{v} \mathscr{I}_{ulvj}^{0101} + \frac{1}{ab} \sum_{j=1}^{m} C_{j}^{v} \mathscr{I}_{ulvj}^{0110} \right) \right]$$
(A1)

Vibration of perforated doubly-curved shells

$$\frac{\partial(\mathcal{U}_{s})_{max}}{\partial C_{i}^{v}} = \frac{12abD}{h^{2}} \left[\frac{v}{ab} \sum_{j=1}^{m} C_{j}^{u} \mathcal{J}_{uluj}^{0110} + \frac{1}{b^{2}} \sum_{j=1}^{m} C_{j}^{v} \mathcal{J}_{vivj}^{0101} + \frac{1}{b} \left(\frac{v}{R_{x}} + \frac{v}{R_{y}} \right) \sum_{j=1}^{m} C_{j}^{w} \mathcal{J}_{vivj}^{0100} + \frac{1}{a^{2}} \sum_{j=1}^{m} C_{j}^{v} \mathcal{J}_{vivj}^{1010} + \frac{1}{a^{2}} \sum_{j=1}^{m} C_{j}^{v} \mathcal{J}_{vivj}^{1010} \right) \right]$$
(A2)

$$\frac{\partial(\mathscr{U}_{s})_{\max}}{\partial C_{i}^{w}} = \frac{12abD}{h^{2}} \left[\frac{1}{a} \left(\frac{1}{R_{x}} + \frac{v}{R_{y}} \right) \sum_{j=1}^{m} C_{j}^{u} \mathscr{I}_{wiuj}^{0010} + \frac{1}{b} \left(\frac{v}{R_{x}} + \frac{1}{R_{y}} \right) \sum_{j=1}^{m} C_{j}^{v} \mathscr{I}_{wivj}^{0001} + \left(\frac{1}{R_{x}^{2}} + \frac{2v}{R_{x}R_{y}} + \frac{1}{R_{y}^{2}} \right) \sum_{j=1}^{m} C_{j}^{w} \mathscr{I}_{wivj}^{0000} \right]$$

$$\frac{\partial(\mathscr{U}_{s})_{\max}}{\partial x^{w}} = 0$$
(A4)

$$\frac{\partial (\mathcal{U}_b)_{\max}}{\partial C_i^u} = 0 \tag{A4}$$

$$\frac{\partial (\mathcal{U}_b)_{\max}}{\partial C_i^{\nu}} = 0 \tag{A5}$$

$$\frac{\partial (\mathcal{U}_b)_{\max}}{\partial C_i^w} = \frac{D}{ab} \left[\left(\frac{b}{a} \right)^2 \sum_{j=1}^m C_j^w \mathscr{I}_{wiwj}^{2020} + \left(\frac{a}{b} \right)^2 \sum_{j=1}^m C_j^w \mathscr{I}_{wiwj}^{0202} + \left(\sum_{j=1}^m C_j^w \mathscr{I}_{wiwj}^{0220} + \sum_{j=1}^m C_j^w \mathscr{I}_{wiwj}^{2002} \right) + 2(1-v) \sum_{j=1}^m C_j^w \mathscr{I}_{wiwj}^{1111} \right]$$
(A6)

and

$$\frac{\partial \mathscr{F}_{\max}}{\partial C_i^{\alpha}} = \rho h \omega^2 a b \sum_{j=1}^m C_j^{\alpha} \mathscr{F}_{\max}^{0000}; \quad \alpha = u, v \text{ and } w,$$
(A7)

where

$$\mathscr{I}_{uuj}^{defg} = \iint_{\mathcal{A}} \frac{\partial^{d+e} \phi_i^u(\xi, \eta)}{\partial \xi^d} \frac{\partial^{f+g} \phi_j^u(\xi, \eta)}{\partial \xi^f \partial \eta^g} d\xi d\eta$$
(A8)

$$\mathscr{I}_{ulvj}^{defg} = \iint_{\mathcal{A}} \frac{\partial^{d+e} \phi_{i}^{u}(\xi, \eta)}{\partial \xi^{d} \partial \eta^{e}} \frac{\partial^{f+g} \phi_{j}^{v}(\xi, \eta)}{\partial \xi^{f} \partial \eta^{g}} d\xi d\eta$$
(A9)

$$\mathscr{I}_{uing}^{defg} = \iint_{\mathcal{A}} \frac{\partial^{d+e} \phi_i^u(\xi,\eta)}{\partial \xi^d \, \partial \eta^e} \frac{\partial^{f+g} \phi_j^w(\xi,\eta)}{\partial \xi^f \, \partial \eta^g} \, \mathrm{d}\xi \, \mathrm{d}\eta \tag{A10}$$

$$\mathscr{I}_{viej}^{defg} = \iint_{\mathcal{A}} \frac{\partial^{d+e} \phi_i^v(\xi, \eta)}{\partial \xi^d \, \partial \eta^e} \frac{\partial^{f+g} \phi_j^v(\xi, \eta)}{\partial \xi^f \, \partial \eta^g} \, \mathrm{d}\xi \, \mathrm{d}\eta \tag{A11}$$

$$\mathscr{F}_{vivj}^{defg} = \iint_{\mathcal{A}} \frac{\partial^{d+e} \phi_i^v(\xi, \eta)}{\partial \xi^d \, \partial \eta^e} \frac{\partial^{f+g} \phi_j^w(\xi, \eta)}{\partial \xi^f \, \partial \eta^g} \, \mathrm{d}\xi \, \mathrm{d}\eta \tag{A12}$$

$$\mathscr{I}_{wing}^{defg} = \iint_{\mathcal{A}} \frac{\partial^{d+\epsilon} \phi_i^w(\xi,\eta)}{\partial \xi^d} \frac{\partial^{f+g} \phi_j^w(\xi,\eta)}{\partial \xi^f} \frac{\partial^{f+g} \phi_j^w(\xi,\eta)}{\partial \xi^f \partial \eta^g} d\xi d\eta$$
(A13)

and i, j = 1, 2, ..., m. The double integrations above are symmetric and in general $\mathscr{I}_{\alpha i \beta j}^{defg} = \mathscr{I}_{\beta j \alpha i}^{fgde}$.

APPENDIX B

The stiffness and mass matrices as given in eqn (12) are

$$\mathbf{K} = \begin{bmatrix} [K_{uu}] & [K_{uv}] & [K_{uw}] \\ & [K_{vv}] & [K_{vw}] \\ sym. & [K_{ww}] \end{bmatrix}$$
(B1)

$$\mathbf{M} = \begin{bmatrix} [M_{uu}] & [0] & [0] \\ & [M_{vv}] & [0] \\ sym. & [M_{ww}] \end{bmatrix}$$
(B2)

and the vector of unknown coefficients is

$$\{\mathbf{C}\} = \begin{cases} \{C_{\mathbf{x}}\}\\ \{C_{\mathbf{y}}\}\\ \{C_{\mathbf{w}}\} \end{cases}.$$
(B3)

The elements in eqns (B1) and (B2) can be expressed as

$$K_{unif} = \left(\frac{b}{h}\right)^2 \mathscr{I}_{uiuf}^{10+0} + \left(\frac{1-v}{2}\right) \left(\frac{a}{h}\right)^2 \mathscr{I}_{uiuf}^{0101}$$
(B4)

$$K_{urij} = v \left(\frac{a}{h}\right) \left(\frac{b}{h}\right) \mathscr{I}_{unj}^{1001} + \left(\frac{1-v}{2}\right) \left(\frac{a}{h}\right) \left(\frac{b}{h}\right) \mathscr{I}_{uirj}^{0110}$$
(B5)

$$K_{uvij} = \left(\frac{a}{h}\right) \left(\frac{b}{h}\right) \left(\frac{b}{R_x} + \frac{vb}{R_y}\right) \mathscr{I}_{uvj}^{1000}$$
(B6)

$$K_{erij} = \left(\frac{a}{\hbar}\right)^2 \mathscr{I}_{vicj}^{0.101} + \left(\frac{1-\nu}{2}\right) \left(\frac{b}{\hbar}\right)^2 \mathscr{I}_{vicj}^{1010}$$
(B7)

$$K_{\text{rwij}} = \left(\frac{a}{b}\right) \left(\frac{b}{b}\right) \left(\frac{va}{R_x} + \frac{a}{R_y}\right) \mathscr{I}_{\text{vwj}}^{0100}$$
(B8)

$$K_{wwij} = \left(\frac{a}{b}\right)^{2} \left[\left(\frac{b}{R_{x}}\right)^{2} + 2v \left(\frac{b}{R_{y}}\right) \left(\frac{b}{R_{y}}\right) + \left(\frac{b}{R_{y}}\right)^{2} \right] \mathscr{I}_{wiwj}^{0000} + \frac{1}{12} \left[\left(\frac{b}{a}\right)^{2} \mathscr{I}_{wiwj}^{2020} + \left(\frac{a}{b}\right)^{2} \mathscr{I}_{wiwj}^{0202} + v (\mathscr{I}_{wiwj}^{0220} + \mathscr{I}_{wiwj}^{2002}) + 2(1 - v) \mathscr{I}_{wiwj}^{1111} \right]$$
(B9)
$$M_{wiw} = \mathscr{I}_{wiwj}^{0000}$$
(B10)

$$M_{uuij} = \mathscr{F}_{uluj}^{outo}$$
(B10)

$$M_{ivij} = \mathscr{I}_{riej}^{0000}$$
(B11)

$$M_{wwij} = \mathscr{I}_{wiwj}^{0000} \tag{B12}$$

and

$$\dot{\lambda} = \omega a b \sqrt{\frac{\rho h}{D}},\tag{B13}$$

where i, j = 1, 2, ..., m.