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Abstract—This study examines the natural frequency and vibratory characteristics of doubly-curved
shallow shells having an outer super-elliptical periphery and an inner super-elliptical cutout. A super-
elliptical boundary in this context is defined as (2x/a)*"+ (2y/b)*" = 1, wheren = 1, 2,3,..., o0. This
class of shells with rounded outer and inner corners has a great advantage over shells with a
rectangular planform as stress concentration at the corners is greatly diffused. As a result, the high
stress durability of such shells has a great potential for use in practical engineering applications,
especially in aerospace, mechanical and marine structures. The doubly-curved shells investigated
possess variable positive (spherical), zero (cylindrical) and negative (hyperbolic paraboloidal)
Gaussian curvatures. A global energy approach is proposed to the study of such shell problems.
The Ritz minimization procedure with a set of orthogonally generated two-dimensional polynomial
functions is employed in the current formulation. This method is shown to yield better versatility,
efficiency and less computational execution than the discretization methods.

1. INTRODUCTION

The vibration of shallow shells (Leissa, 1973a) has long been a subject of intensive research
for many years. A vast number of references can be found for such analyses of cylindrical
and spherical shallow shells (Webster, 1968 ; Deb Nath, 1969; Petyt, 1971; Olson and
Lindberg, 1971 ; Leissa et al., 1983 ; Leissa and Narita, 1984 ; Cheung et al., 1989). However,
the literature dealing with shells with circular and elliptical planforms is limited. To the
authors’ knowledge, the only study was done by Narita and Leissa (1986) who investigated
the completely free shallow shells of curvilinear planform.

Rectangular plates with rounded corners, the so-called super-elliptical plates, had been
examined by Irie et al. (1983) and Wang et al. (1993). The doubly-connected plates of
arbitrary shape with over-restrained boundaries have been treated recently by Liew (1993).
No studies can be found for flexural vibration of doubly-curved shallow shells with an
internal cutout having super-elliptical inner and outer peripheries. This class of shells,
however, has many possible engineering applications, especially in aerospace, mechanical
and marine structures, owing to its capability to diffuse and dilute stress concentration at
the rounded corners and thus possesses higher stress durability. It is, therefore, the primary
motivation of the current paper to investigate the vibration behaviour of this class of
perforated shallow shells. With the aim of enhancing the literature, a set of comprehensive
natural frequencies and mode shapes of such shells subject to various boundary constraints
is presented.

The eigenvalue derivation, in this paper, is based on the Ritz minimization procedure.
A class of admissible pb-2 shape functions is employed (Lim and Liew, 1994 ; Liew and
Lim, 1994a,b). These pb-2 shape functions consist of the product of sets of orthogonally
generated two-dimensional polynomial functions (p-2) and a basic function (b). These
kinematically oriented shape functions ensure automatic satisfaction of the prescribed
geometric boundary conditions at the outset. As a result, this method of analysis prevails
over the discretization methods in terms of versatility, efficiency and computation effort
with no loss of (or even better) accuracy.

The present undertaking covers wide ranges of curvature ratios and shallowness ratios
with selective super-elliptical shell geometries. Results of rectangular shells with a circular
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cutout is also presented to emphasize the consistency and accuracy of frequencies between
the super-elliptical and rectangular shells. The convergence and comparison tests of eigen-
values are examined to ensure the numerical accuracy and reliability of these results. Sets
of non-dimensional frequency parameters and mode shape figures are presented for future
reference.

2. THEORETICAL FORMULATION

2.1. Problem definition

Consider a homogeneous, isotropic and thin perforated doubly-curved shallow shell
bounded by a super-elliptical boundary with thickness 4 and radii of curvature R, and R,.
The geometric expression of the midsurface of the shell in rectangular cooordinate system

is given as
1 x2 y2
=73 (E s M

¥

and the super-elliptical circumferences can be represented by

2xzn+<2y2n—1' =1.2.3 2
a b - ) n= 9~y 9'--’wv ()

where a and b are the maximum shell dimensions in the x- and y-directions, respectively.
The shell is doubly-connected with a super-elliptical cutout of dimensions &’ and &’. Figure
1 shows the planform of the shell where 2n, and 2n, are the powers of the super-elliptical
functions of the outer and inner peripheries. The deflections of the midsurface are resolved
into three orthogonal components #, v and w, with » and » tangential to the midsurface
(u parallel to the xz-plane and v parallel to the yz-plane) and w normal to it.

The free vibration frequencies and mode shapes of this perforated super-elliptical shell
are determined using the Ritz formulation. Two classes of perforated shells are under the
present consideration: (1) simply supported and (2) fully clamped shells on the outer
circumferences. Both shells have the inner boundaries free. These boundary constraints are
termed SF and CF (where S and C stand for the simply supported and fully clamped outer
circumferences, respectively, and F the free inner boundary).

1

Fig. 1. Geometry of the planform of super-elliptical shell (2x/a)® 1+ (2y/b)’" = | with a super-
elliptical cutout (2x/a")?: + (2p/b")*"2 = 1.
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2.2. Energy functional
The total strain energy, %, of the shell described above is composed of the membrane

strain energy, %,, and the bending strain energy, %,
U =U+Uy. €)

The membrane strain energy is caused by the stretching effects of the midsurface of the
shell. The strain energy components are respectively given by (Leissa et al., 1983)

U, = 6h—€ JL |:(gx+£y)2—2(l —v)(sxey— %yﬁ)] d4 @
D ) 0%w 0w o*w Y}
a5 | jawr 20| 55 (53 s ©

where the flexural rigidity D = Eh*/12(1 —v?), Eis Young’s modulus, v is the Poisson ratio,
A is the shell planform area and A is the Laplacian operator defined as (8%/0x*+ 6%/0y?).
The double integration is performed over the projected planform area of the shell on the
xy-plane.

The strains of the membrane can be expressed in terms of the deflections as

and

6_(’3_u+i‘ 8_6v+w. _61)+6u
*“ox R VT dy RS T = ox oy

V

(6a—6¢)

The kinetic energy is given by

7= LGl G+ (6 e 2

where p is the mass density per unit volume.
Assuming the free vibration amplitude to be small, the deflection functions may be
expressed as sinusoidal functions

u(x, y, 1) = U(x, y)sin ot (8a)
v(x, y, 1) = V(x, y)sin ot (8b)
w(x, y, t) = W(x, y)sin wt, (8¢c)

where  is the angular frequency of vibration. By using eqns (6a—) and (8a—), the strain
energy and kinetic energy components, eqns (4), (5) and (7), can be further simplified to
the following expressions

- ()
s/max — h2 P ax Rx ax+ + ay + F‘5y'+ _y

2v<6U6V+6UW+W6V ww
axdy " xR TR, RR,

S [ )
32

D o*w [*wWY
(%)max=2ff {(AW)2 2(1—v) oy “(axay) ]}dA (9b)
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how? ,
T =" : JJ (U + V2 4+ W?)dA, (9¢)
A4

where (%)) maxs (U ;) max a0d T 1, denote the maximum bending strain, stretching strain and
kinetic energies in a vibratory cycle. U(x, y), V(x, ¥) and W(x, y) are the deflection
amplitude functions in the x-, y- and z-directions.

2.3. Eigenvalue equation

In non-dimensional coordinates, ¢ = x/a and = y/b, where a and b are the character-
istic length scales of the shell ptanform as shown in Fig. 1. The deflection amplitude functions
can be approximated by sets of orthogonally generated two-dimensional polynomials of
the forms

UG = ¥ CigrE ) (102)
i=1

Ve = 3 Ciiten (10b)

W(Em = ¥ Crore . (100)

where C}, C} and C} are the unknown coefficients. The pb-2 shape functions ¢, ¢; and
" and the corresponding boundary conditions will be discussed in due course.
Minimization of the energy functional with respect to the unknown coefficients accord-
ing to the Ritz principle as follows :

é

ﬁ(%max—g‘max)z()’ ox=u, vand w (ll)

in which % ., = (U ) max+ (%) max» TeSUlLs in the following governing eigenvalue equation
(12K—2’M){C} = {0}, (12)

where K is the stiffness matrix and M is the mass matrix. The detailed expressions for eqn
(11) and the elements of K and M are given in Appendices A and B, respectively. The
eigenvalue, 4, in eqn (12) is the non-dimensional frequency parameter of the vibrating
shallow shell to be studied in the present analysis.

2.4. The pb-2 shape functions and boundary constraints

The pb-2 shape functions for U, V and W are ¢}, ¢/ and ¢/, respectively. These shape
functions are fundamentally sets of admissible functions which are composed of the product
of terms (indicated by i) of a two-dimensional orthogonally generated polynomial (p-2)
and a basic function (), i.e.

i—1

#E ) = SEMBI= T Z)of. (13)

where
= — AA (14a)
A = j f F(& iy dedy (14b)

A = Jf (¢5)>dédn, o= wu,vandw. (14c)
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X, fi(&, n) forms a set of p-2 functions. The basic function, ¢{ is defined as the product
of the equations of the continuous piecewise boundary geometric expressions each of which
is raised to a basic power depending on the types of boundary constraints imposed on the
shell, i.e.

o1&, ) = f] [TA& ), a=wu,vandw, (15)

i=1

where n, is the number of supporting edges; I'; is the boundary expression of the ith
supporting edge ; and 9} (¢ = u, v and w) are the basic powers.

The Ritz method requires an admissible function which satisfies the geometric bound-
ary conditions. The imposition of the powers to the basic functions, ¢5(&, #), results in a
class of kinematically oriented pb-2 shape functions consistent with the following geometric

Table 1(a). Convergence of A = wab,/(ph/D) for the doubly-connected super-elliptical and rectangular simply
supported shallow shells with a circular cutout (v = 0.3, a/b = 1.0, a'/b’ = 1.0, a’/a = 0.3, a/h = 100.0and n, = 1)

p Mode sequence number

n, u v w 1 2 3 4 5 6 7 8

10 10 10 156.14  156.14 19273  192.73 21690 221.97 22197 258.96
10 10 12 155.75 155.76  192.44 19244 21655 221.31 22131  258.92
10 10 14 155.39 15539  192.02 19202 21632 221.04 221.04 258.88
10 10 16 15490 15490 191.61 191.61 21626 22087 220.87 258.64
10 10 18 15435  154.36  191.31 19131  216.24  220.70  220.71  256.78
10 12 18 152.57  153.16  191.00 191.06 212.78  219.05 219.18  256.31
10 14 18 151.82 15256 190.75 190.81 211.22 21796 218.08 255.96
1 10 16 18 151.50  152.28  190.58  190.64  210.58 217.36 21743  255.75
10 18 18 151.34 15216 19049  190.52  210.31  217.07 217.11 25563
10 20 18 151.27  152.11 19044 19046  210.18 21693 21695  255.57
12 20 18 149.99  150.41 190.24  190.25  207.70 21476 21478  255.10
14 20 18 149.51 149.67 190.06  190.07 206.56 21340 21342 25474
16 20 18 149.31 14935 189.93 18993  206.09 21274 212.75  254.50
18 20 18 149.18  149.18  189.85 189.85 20590 21246 21246 25436
20 20 18 149.08  149.08  189.81 189.81  205.83 21229 21229  254.29

10 10 10 164.31 166.70  191.29 19129 21891 22096 22097 245.07
10 10 12 164.02 166.44 191.18 19118 216.95 21695 218.67 243.42
10 10 14 163.91 16640  191.07 191.07 21672 216.72 218.19 242.72
10 10 16 163.79 16633  190.89  190.89  216.65 216.65 217.99 241.86
10 10 18 163.64  166.24  190.65 190.65 216.58 216.58 217.90 240.75
10 12 18 160.84  161.61 190.30  190.60  213.23 21536 21543  240.52
10 14 18 158.59  159.11 189.92  190.50 21020 21446  214.53  240.14
10 10 16 18 156.90  157.70  189.57 190.35 20827 213.71  213.76  239.65
10 18 18 15582 156.97  189.29  190.15  207.07 213.03 21330  239.09
10 20 18 155.21 156.63  189.10  189.96  206.37 212,51 213.02 23861
12 20 18 151.67 15226  189.07 189.75 20231  210.71 211.38  238.45
14 20 18 148.85  149.91 189.03  189.49  199.54  209.10 209.84  238.31
16 20 I8 146.91 148.76 ~ 188.97  189.22  197.81  207.82  208.39  238.17
18 20 18 14579  148.25 188.89 18898  196.82 20693  207.18  238.06
20 20 18 14528  148.01 188.80  188.80  196.27 206.34  206.34  237.95

10 10 10 154.66  156.12  190.57  190.57 20842 213.92 213.92 24244
10 10 12 15443 15591 19045 19045  208.09 213.51 21351 241.79
10 10 14 154.24 15579 19023  190.23  207.77 21337 21337  240.82
10 10 16 153.99 15563 189.96 189.96 207.64 21329 21329  239.60
10 10 18 153.70  155.43 189.68  189.68  207.59 21320 213.20 238.40
10 12 18 151.88  153.04 189.29  189.60 20471  212.05 212.12  238.03
10 14 18 150.84  151.65 18895 189.51 202.66 211.16 211.24 237.63
© 10 16 18 150.09 15096  188.68  189.38  201.58  210.32 21069 237.21
10 18 18 149.73  150.53  188.50  189.24 20092  209.72 210.37  236.80
10 20 18 149.52  150.32  188.39  189.12  200.58  209.30 210.19  236.49
12 20 18 147.12 14842  188.34  188.86  198.11  207.61 208.6!  236.36
14 20 18 145.55  147.55 18829  188.58  196.64 206.34  207.18  236.23
16 20 18 144.67 147.12  188.23  188.36 19581  205.52 20601  236.12
18 20 18 14423 14690  188.16  188.20 19538  205.05 20521  236.03
20 20 18 144,05  146.73 188.10  188.10  195.14 204.74 204.74 23596

SAS 31:11-C
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Table 1(b). Convergence of A = wab,/(ph/D) for the doubly-connected super-elliptical and rectangular fully
clamped shallow shells with a circular cutout (v = 0.3, a/b = 1.0, &'/b’ = 1.0, a’/a = 0.3, a/h = 100.0 and n, = 1)

¥4 Mode sequence number
n, u v w 1 2 3 4 S 6 7 8
10 10 10 173.99 174.00 197.95 197.95 222.46 245.92 24593 289.36
10 10 12 173.46 173.46 197.15 197.15 222.28 245.52 245.52 289.22
10 10 14 172.75 172.75 196.39 196.39 222.23 245.24 245.24 289.15
10 10 16 171.95 171.95 195.86 195.86 222.22 24495 244.95 289.12
10 10 18 171.21 171.22 195.56 195.56 222.21 244.66 244.66 289.11
10 12 18 169.46 170.02 195.13 195.21 218.80 242,84 24298 288.36
10 14 18 168.73 169.43 194.79 194.88 217.26 241.65 241.78 288.08
1 10 16 18 168.43 169.17 194.58 194.65 216.63 240.99 241.07 287.96
10 18 18 168.30 169.05 194.46 194.51 216.37 240.66 240.70 287.92
10 20 18 168.24 169.01 194.40 194.43 216.25 240.51 240.53 287.90
12 20 18 166.99 167.40 194.09 194.11 213.71 238.15 238.17 287.47
14 20 18 166.52 166.69 193.82 193.83 212.55 236.67 236.69 287.29
16 20 18 166.35 166.40 193.63 193.64 212.07 235.94 235.95 287.22
18 20 18 166.25 166.26 193.53 193.53 211.88 235.61 235.62 287.20
20 20 18 166.17 166.18 193.48 193.48 211.81 235.44 235.44 287.19
10 10 10 173.67 181.09 195.10 195.10 231.81 243.17 243.22 262.17
10 10 12 173.45 180.78 194.98 194,98 231.57 234.12 234.12 261.13
10 10 14 173.38 180.59 194.77 194.77 231.10 233.60 233.60 261.04
10 10 16 173.27 180.38 194.45 194.45 230.92 233.45 233.45 261.01
10 10 18 173.16 180.12 194.06 194.06 230.85 233.26 233.26 260.97
10 12 18 168.32 177.15 193.78 193.92 22491 231.36 231.68 260.24
10 14 18 165.90 174.83 193.46 193.70 221.17 230.13 230.85 259.95
10 10 16 18 164.53 173.04 193.17 193.39 218.92 229.18 230.17 259.86
10 18 18 163.82 171.89 192.93 193.02 217.57 228.53 229.66 259.80
10 20 18 163.48 171.22 192.68 192.77 216.81 228.13 229.30 259.76
12 20 18 159.09 168.07 192.53 192.69 211.62 226.14 226.95 259.47
14 20 18 156.82 165.57 192.35 192.54 208.23 224.62 224 .98 259.35
16 20 18 155.71 163.79 192.15 192.32 206.18 223.28 223.40 259.29
18 20 18 155.20 162.74 191.97 192.07 205.03 222.22 222.26 259.23
20 20 18 154.98 162.23 191.83 191.83 204.40 221.53 221.53 259.18
10 10 10 162.60 171.10 193.93 193.93 217.94 229.14 229.14 259.66
10 10 12 162.41 170.78 193.50 193.50 217.72 228.94 228.94 259.61
10 10 14 162.17 170.35 193.04 193.04 217.65 228.71 228.71 259.58
10 10 16 161.89 169.88 192.63 192.63 217.62 228.50 228.50 259.56
10 10 18 161.58 169.39 192.31 192.31 217.61 228.31 228.31 259.54
10 12 18 159.19 167.58 191.99 192.10 214.12 226.77 227.33 259.44
10 14 18 157.80 166.52 191.69 191.85 211.75 225.64 226.51 259.36
fe'e] 10 16 18 157.13 165.75 191.47 191.56 210.51 224.86 225.83 259.32
10 18 18 156.70 165.36 191.32 191.32 209.77 224.37 225.31 259.28
10 20 18 156.46 165.12 191.10 191.21 209.42 224.10 224,98 259.25
12 20 18 154.57 162.93 190.90 191.05 206.44 222.58 222.88 259.17
14 20 18 153.69 161.44 190.68 190.84 204.72 221.25 221.27 259.11
16 20 18 153.27 160.60 190.51 190.62 203.74 220.17 220.24 259.05
18 20 18 153.06 160.16 190.37 190.43 203.27 219.52 219.53 258.99
20 20 18 152.88 159.96 190.27 190.27 203.00 219.12 219.12 258.93
boundary conditions:
e for the SF shell
U|§=6P.n=ﬂp =0, V|6=5y.n:m =0, W|é=£y.r/=m =0 (16a-16c)
6_W #0 (16d)
on, E=ton=1,
e for the CF shell
Ulseton=n, =0, Vlecgonan, =0, Wleg gy, =0 (17a-17¢)
ow —0, (17d)
on, le=g,m=n,




Table 2(a). Comparison of frequencies (in hertz) for the fully clamped aluminium cylindrical (singly-curved) shallow shell without cutout (R, = o0, a’/fa = b'/b = 0)

E =107 1by/in? p = 0.096 b, /in% v = 0.33, R, = 30.0 in, A = 0.013in,a =3.0in, 5 = 4.0 in

Reference

Mode sequence number

2 3 4 5 6 7 8 9 10
Experiment (Deb Nath, 1969) 814 940 1260 1306 1452 1802 1770 2100 2225 2280
ERR (Webster, 1968) 870 958 1288 1364 1440 1753 1795 2057 2220 2300
FET (Olson and Lindberg, 1971) 870 958 1288 1363 1440 1756 1780 2056 2222 2295
FER (Deb Nath, 1969) 890 973 1311 1371 1454 1775 1816 2068 2234 2319
K (Deb Nath and Petyt, 1969) 890 966 1295 1375 1450 1745 — — — —
FSM (Cheung et al., 1989) 874 963 1298 1369 — — — — — —
pb-2 method (n, = 10) 870.12 958.34 1288.7 1364.1 1440.3 1753.9 1780.0 2056.5 2219.2 2289.7
pb-2 method (n, = ) 870.10 958.21 1288.6 1364.0 1440.2 1753.7 1779.9 2056.4 2218.9 2289.2
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Table 2(b). Comparison of frequencies waz\/ (ph/D) for the completely free shallow shells of rectangular planform without cutout (a/A = 100 and a’/a = b'/b = 0) where the pb-2 solution employs
a super-elliptical shell with n, = 10

Mode sequence

9Zst

AS-2

afb v R/R, afR, Reference §§-1 §S-2 SA-1 SA-2 AS-1 AA-1 AA-2
Leissa (1973b) 19.789 24.432 35.024 61.526 35.024 61.526 13.489 —
— 0 Gorman (1978) 19.60 24.27 34.80 61.08 34.80 61.08 13.47 —
Leissa and Narita (1984) 19.596 24.271 34.801 61.111 34.801 61.111 13.468 69.279
pb-2 method 19.523 24.381 34.947 61.255 34.947 61.255 13.523 69.268
0.2 Leissa and Narita (1984) 24.741 52.574 36.957 77.063 36.957 77.063 13.462 77.647
—1 pb-2 method 24.851 52.563 37.145 77.217 37.145 77.217 13.517 78.325
0.5 Leissa and Narita (1984) 25.695 64.262 38.923 103.77 38.923 103.77 13.425 79.401
pb-2 method 25.781 64.577 39.131 104.16 39.131 104.16 13.481 80.055
1 0.3 0.2 Leissa and Narita (1984) 21.904 38.473 34852 75.298 37.643 61.154 13.483 70.952
0 pb-2 method 21.942 38.640 35.003 75.552 37.807 61.283 13.539 70.965
0.5 Leissa and Narita (1984) 22.074 54.329 34.870 98.220 48.711 61.326 13.508 72.479
pb-2 method 22.119 54.697 35.029 98.412 48.939 61.391 13.564 72.533
0.2 Leissa and Narita (1984) 19.757 42.353 35.880 73.890 35.880 73.890 13.524 69.598
1 pb-2 method 19.755 42.675 36.013 74.172 36.013 74.172 13.580 69.573
0.5 Leissa and Narita (1984) 19.997 49.623 36.862 87.725 36.862 87.725 13.576 70.723
pb-2 method 19.988 49.974 36.994 87.875 36.994 87.875 13.633 70.635
Gorman (1978) 19.22 24.42 34.23 60.92 34.23 60.92 13.17 68.12
0.333 — 0 Leissa and Narita (1984) 19.224 24423 34.233 60.951 34.233 60.951 13.169 68.142
pb-2 method 19.224 24.535 34.376 61.099 34.376 61.099 13.223 68.132
Gorman (1978) 21.25 87.62 57.34 158.2 59.07 103.3 25.97 99.92
2 0.333 — 0 Leiss and Narita (1984) 21.241 87.696 57.350 169.28 59.087 103.27 25.974 99.938
pb-2 method 21.284 87.795 57.610 158.77 59.150 103.80 26.075 100.37

WIT M "D pue mary ‘W 'Y
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where &, and 1, are the circumferential coordinates and », is the direction normal to the
circumference in the xy-plane.

Accordingly, the power to the basic functions for the transverse deflection (¢ = w) is
set to 0, 1 or 2 corresponding to a free, simply supported or clamped edge. For the in-plane
deflections (« = u and v), the power is set to zero for a free edge and one for either a
simply supported or clamped edge. The in-plane deflection gradients are always non-zero
(Gu/on, # 0, dujon, # 0, dv/dn, # 0 and dv/dn, # 0, where n, and n, are the directions normal
and tangential to the outer and inner peripheries of shells) regardless of the boundary
constraints.

For the doubly-connected super-elliptical shell, the basic functions can be represented
by

. 2 2n, 2b 2ny b3
¢7=[(2é)2"'+(2n)2"‘~1]7'[< f) +(b,") —1] (a8)

n,n,=1273,...,00, a=u,vandw,

where y{ = 1 or 2 and y3 = 0 corresponding to the SF or CF shell. The integers n, and n,
are the powers for the outer and inner super-elliptical functions. For shells having a
rectangular outer boundary (n, = c0) and a super-elliptical inner periphery, the basic
functions are

. 2 2n, 2b 2n, v5
¢ = [(52—0.25)(112—0.25)]“[( Z,é) +( b,") —1] 19

n,n,=123,...,00, a=uvandw,

where y} = 1 or 2 and y$ = 0 as explained earlier.
The two-dimensional polynomial X7, f/(&, 1), as mentioned in eqn (13) can be ex-
pressed as

T G =3 % e o)

g=0i=0
with m and p related by

- (p+1)2(p+2), an

where p is the degree set of the two-dimensional polynomials.

3. NUMERICAL STUDIES

Convergence and comparison of eigenvalues are performed to justify the accuracy and
validity of the present analysis and numerical algorithm. For descriptive purposes, two
kinds of boundary conditions are studied, namely the SF shell (simply supported at the
outer edge and free at the inner edge) and the CF shell (fully clamped at the outer edge and
free at the inner edge). The outer periphery has super-elliptical powers 27, = 2, 10, 20 and
whereas the inner cutout is circular (2n, = 2). The effect of Gaussian curvature (1 /R:R,)
is investigated by varying the curvature ratio (R,/R,). New data are presented for wide
ranges of shallowness ratios (a/R,) and curvature ratios. The Poisson ratio is fixed at
v = 0.3, thickness ratio a/h = 100.0, aspect ratio a/b = 1, cutout ratios a’/a = 0.3 and
afb =1.0.
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3.1. Convergence and comparison studies

Since the pb-2 shape functions adopted are orthogonally generated two-dimensional
polynomials which satisfy the geometric boundary conditions, the application of the Ritz
procedure in the present analysis ensures the upper bound convergence of eigenvalue to the
exact solutions. In order to determine the lowest degree of polynomial required to achieve
satisfactory accuracy, convergence tests have been carried out with the results given in
Tables 1(a) and 1(b). The degrees of polynomial for u, v and w for various n, are increased
from 10 and onwards. The upper bound nature of the Ritz formulation is clearly shown in
the convergence tables where the eigenvalues decrease as the polynomial degrees increase.
It is found that the degrees 20, 20 and 18 for », v and w are sufficient to furnish the
acceptable accurate solutions within the engineering interest.

Table 2(a) shows the comparison of frequencies (in hertz) for a fully clamped alu-
minium cylindrical shallow shell without cutout. The shell geometric specifications and
mechanical properties of the experimental specimen by Deb Nath (1969) are listed in the
same table. Results of Petyt (1971) and the finite strip results of Cheung er al. (1989) are
reproduced and compared to the present pb-2 solutions. In this comparison study, ERR
refers to the extended Rayleigh-Ritz method of Webster (1968) ; FET, the triangular finite
element method of Olson and Lindberg (1971) ; FER, the rectangular finite element method
of Deb Nath (1969) ; K, the Kantorovich method of Kantorovich and Krylov (1964) which
was applied by Deb Nath and Petyt (1969) and FSM, the finite strip method of Cheung ez
al. (1989). The present pb-2 method is used to provide two sets of solutions. The first set

Table 3(a). Frequency parameters 4 = wab, /(phiD) for the doubly-connected super-elliptical (n, = 1, 5 and
n, = 1) simply supported shallow shells (v = 0.3, a/b = 1.0, a’/b’ = 1.0, a’/a = 0.3 and a/h = 100.0)

Mode sequence number

n, bR, RJR, 1 2 3 4 5 6 7 8

0.0 all 18.663  51.933 51933 97.092 97.092 14820 15550  155.50

—-1.0 38900 60474 60.474 10009 101.35  150.74  157.88  157.88

-0.5 33.758 55375  59.822 98971  99.671 14992 157.01 157.03

0.1 0.0 34404 54189  60.171  98.582  98.871 149.97 156.80  156.81
0.5 40.587  57.178  61.504 98930  98.992 150.87  157.25  157.25

1.0 50.256  63.752  63.752 100.00 100.00  152.63  158.35  158.35

—1.0 10228 105.71 105.71 121.28  130.05 170.24  175.09  175.09

-0.5 77417  84.898 102.21 11274 11699  164.15  167.71 168.61

1 0.3 0.0 69.329  86.468 104.11 109.54 11030 16510  166.04  166.18
0.5 88.275 106.47 1l1.16 11216 11272 17005 170.14  172.37

1.0 11992 11992 12207 122.07 13665 179.04 179.04 187.46

~1.0 15452 15823 15823 160.79  172.09  203.67 203.67  206.74

—0.5 108.14 13338 13550 141.04 14975 188.06  188.78  193.75

0.5 0.0 91.228 120.81 127.64 13747 15285 179.00 18494 19741
0.5 12857 129.72 13320 167.09 168.54 190.68  193.52  216.75

1.0 149.08 149.08  189.81 189.81 20583 21229 21229 25429

0.0 all 19.109  47.625 47.626  75.059  94.274 112.40 12524  125.24

—1.0 39952 56993  56.993  79.408 97.989 11653  127.76  127.76

—0.5 34581 51.286 56.445 77.865 96.472 11520 12637  127.53

0.1 0.0 34964 49943  56.892 77.498 95.777 11513 12626 1278l
0.5 40.961 53.322 58310 78318  96.031 11625 12742  128.58

1.0 50.540  60.629  60.629  80.277 97.102 118.64  129.83 129.84

—-1.0 10331 103.31 103.46  107.48 123.33 147.27  147.31 147.31

—0.5 74.032  86.389  97.107 100.61 109.17  136.34 13891 144.45

5 0.3 0.0 65432  87.386 94296 102.09  103.12 13514 139.62  146.5!
0.5 86.004  99.544 10632 10672 11044 14405 14733  152.15

1.0 111.03 116.48  121.28  121.28 13243 161.10 161.10  167.09

—1.0 14620 15052  150.52 158.12 160.90 18565 185.65  199.51

—-0.5 10475 12566 126,10 13526 13696 16930 17243  182.12

0.5 0.0 87909 108.89 119.04 13455 13885 167.88 169.16 177.85
05 12266 12744 128.13  160.61 161.07 181.04  182.83  195.27

1.0 14492 14748 188.63 188.64 19565 205.65 20565  237.16
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Table 3(b). Frequency parameters A = wab,/ (ph/D) for the doubly—coring:tevd' super-elliptical and rectangular
(n, =10,00 and n,=1) simply supported shallow shells (+=0.3, a/b=10, a'/b' =10, a’/Ja=03 and
alh = 100.0)

Mode sequence number

n, bR,  RJR, 1 2 3 4 5 6 7 8

0.0 all 19.443  48.112  48.112 75646  94.343 11294 12582 12582

—-1.0 40.122 57.383  57.383  79.954 98.044 117.07 128.33  128.33

—0.5 34771  51.733  56.841  78.427 96.536 11574 12694  128.10

0.1 0.0 35.146  50.408 57.288  78.066 95848 115.67 12683  128.38
0.5 41.110  53.759 58.700 78.884  96.107 116.79  128.00  129.15

1.0 50.655 61.008 61.008 80.833  97.183 119.18 13040 130.40

—1.0 10346 10346 103.63 107.83  123.31 147.73 14782 147.82

—0.5 74321  86.533  97.527 100.76  109.25 136.89  139.35 14496

10 0.3 0.0 65.797  87.521 94761 10221 10328  135.71 140.06  147.01
0.5 86.286 100.02  106.41 106.91  110.61 14462 147.77 152.64

1.0 11149 11666 121.47 12147 13268 161.63 161.63  167.40

—1.0 14639 15062 150.62 158.57 160.81 18598 18598  199.61

—0.5 10496 12594 126.14 13561 13715 169.63 17277 18234

0.5 0.0 88.207 109.03 11941 13493  139.14 168.20 16948  178.68
0.5 12288 127.66 128.58 161.09 161.36 18147 183.16  196.22

1.0 14528 148.01 188.80  188.80  196.27  206.34  206.34  237.95

0.0 all 19.515 47.595 47.595 75.898 94.092 11332 125.50 125.50

—-1.0 40.020 56.865  56.865 80.172 97.763 117.40  128.02  128.02

-0.5 34709  51.214 56333 78.652 96270 116.08  126.65  127.77

0.1 0.0 35.094 49.898 56.791  78.279 95586 116.02  126.53  128.04
0.5 41.034 53269  58.217 79.068 95.832 117.13  127.69 128381

1.0 50.536  60.537  60.537 80.969 96.884 119.50  130.07  130.07

—1.0 10272 102.72 103.08 107.87 12282 147.57 14757 147.84

—-0.5 73743 86.102  97.589 100.06 108.98  136.77 13940 144.52

oo 0.3 0.0 65295  87.098 94728 102.01 102.65 13557 140.09  146.52
0.5 85.837  99.783 106.03 10642 110.06 14431 147.87  152.14

1.0 11099 116.01 12096 12096 13207 161.05 161.05 167.52

—1.0 14623 14942 14942 15746 15996 18583 18583  199.50

—0.5 104.21 12580  125.88  134.52  136.25 169.56 172.23  181.22

0.5 0.0 87.633 108.89  119.04 133.79 13841 166.73  169.26  177.11
0.5 12227 127.12 12779 15994 160.52  180.95  182.04 194.13

1.0 14405 14673 188.10  188.10 19514 204.74 20474  235.96

of solutions is obtained by assigning #n, = 10 which is in close resemblance with a rectangular
cylindrical shell as shown in Fig. 1. The second set of solutions (n, = ) is for the
rectangular shell.

The implication of comparison shown in Table 2(a) is two-fold and far-reaching.
Firstly, it demonstrates the reliability of the present method of analysis with respect to a
variety of other computational solutions as well as the experimental results of Deb Nath
(1969). Close agreement between the various methods has been observed especially between
the solutions of ERR (Webster, 1968), FET (Olson and Lindberg, 1971) and the present
pb-2 method. Secondly, it provides the confirmation of analytical and numerical consistency
that the results for super-elliptical shells with a high super-elliptical power (n, > 10)
approach the rectangular shell solutions.

Table 2(b) further compares the solutions of a free shallow shell of rectangular plan-
form with various other sources. The flat plate results (¢/R, = 0) of Leissa (1973b) and
Gorman (1978) are also included. SS-1 and SS-2 denote the first and second symmetric—
symmetric modes with respect to the x- and y-axis. SA, AS and AA are the corresponding
symmetric-antisymmetric, antisymmetric-symmetric and antisymmetric-antisymmetric
modes. The results of the present pb-2 method are generated using a super-elliptical shell
model with n, = 10. The non-dimensional frequency parameter presented here is expressed
in terms of wa?,/(phy/Dy). Good agreement between the results is again achieved. Conse-
quently, we can conclude that a super-elliptical shell model with a high super-elliptical



1530 K. M. Liew and C. W. Lim

power (n, = 10) can well simulate a rectangular shell so far as its vibratory characteristics
are concerned.

3.2. Results and discussion

New sets of data for selective shell configurations are presented in Tables 3(a), 3(b),
4(a) and 4(b). Tables 3(a) and 3(b) show the non-dimensional frequency parameter
A = wab./(phy/D,) for a simply supported shallow shell with various outer super-elliptical
powers n, = 1, 5, 10 and co and a circular cutout n, = 1. Tables 4(a) and 4(b) present the
corresponding data for a fully clamped shallow shell. For all cases, the shallowness ratio
b/R, ranges from 0.0 to 0.5 and the curvature ratio R,/R, from —0.5 to 0.5. A negative
curvature ratio represents a hyperbolic paraboloidal shell whereas a positive R,/R, rep-
resents a spherical shell. '

Note that cases where b/R, # 0 and R,/R, = 0 correspond to cylindrical shells with
shallowness ratio a/R, = 0. Furthermore, 4 is completely independent of the curvature ratio
for /R, = 0 and R,/R, « oo because it corresponds to a flat plate with infinite radii of
curvature. The consistency of results for n, = 10 and n, = o« as exemplified clearly in the
previous section is again observed here for both simply supported and fully clamped shells
[see Tables 3(b) and 4(b)].

In Tables 3(a) and 3(b), it is observed that the fundamental frequencies increase
significantly for deeper shells (higher /R ) having the same boundary conditions. For

example, the fundamental 4 (#n, =1 and R,/R,= —1.0) increases from 38.900 for
Table 4(a). Frequency parameters 4 = wab./( ph/[)ﬁ) for the doubly-connected super-elliptical (n, =1, 5 and

n, = 1) fully clamped shallow shells (v = 0.3, a/6 = 1.0, a’/b’ = 1.0, a’/a = 0.3 and a/h = 100.0)

Mode sequence number

n bR, RJR, 1 2 3 4 5 6 7 8

0.0 all 45699  78.728  78.731 131.37 13138  197.13  197.13  207.00

—-1.0 55.884 83910 83913 133.25 134.04 19871 198.72  208.82

—0.5 52.815  80.707  83.603 132.53 13298  198.13  198.13  208.24

0.1 0.0 53.140  80.049 83921 13226 13246 19797 19797 208.31
0.5 56.813  82.006 84.863 13243 13248 198.23  198.23  209.02

1.0 63.229  86.398  86.402 133.04 133.04 19891 198.91  210.38

—1.0 10580 11697 11697 14731 153.50  210.71 21071  223.01

—0.5 90.735 94984 114.88 14140 14478  205.64 20592  218.21

1 0.3 0.0 89.738  92.055 117.00 139.04 14023  204.26  204.34  218.97
0.5 10442 109.77 12313 14044 14068  206.59  206.61  225.06

1.0 13246 13246  136.84 14537 14538 21230 21230  236.68

—~1.0 16164 16232 16232 171.64 18563 232,14 23214  249.61

—-0.5 118.11 134.82  157.27 15738 16432  219.68 22032  238.18

0.5 00 10572 13426 151.13  154.05 16170  215.26 21627  240.86
0.5 138.06 152.03 15457 169.86 17494  221.38  221.99  256.60

1.0 16617 166.18 19348 19348 21181 23544  235.44 287.19

0.0 all 39433 71.310 71312 10416  125.67 156.63  162.17 162.18

—-1.0 51603  77.184  77.185 106.70 128.10  159.56  163.84  163.85

—0.5 47.947 73448 76936 105.77 127.13 158.59 162.93 163.68

0.1 0.0 48.098  72.635  77.309 105.51 126.68 158.55 162.86  163.86
0.5 52.037 74.858  78.292 105.92 126.79 159.42 163.62 164.37

1.0 58.976  79.860  79.861 106.98 127.42 161.21 16520  165.21

—1.0 10551 112.79 112.79 124.98 145.85 176.98 176.99 182.10

—0.5 88.610  89.585 111.20 117.76 136.84 169.44  174.86 175.10

5 0.3 0.0 82.353  90.090 113.65 115.55 132.28 168.65 175.15 176.50
0.5 98.609 107.36 118.62 119.84  134.28 17479  180.52 181.70

1.0 126.28 128.98 128.95 133.75 140.31 186.93 186.94 196.10

- 1.0 154.29 157.57 157.57 160.74 175.25  202.83  202.84  223.63

-0.5 112.58 135.24 138.01 151.19 151.73 186.92 195.24  207.19

0.5 0.0 98.452 132.46 134.82 138.91 156.47 185.00 197.82  208.71
0.5 133.42 138.94 145.96 164.01 172.15 196.64 20642  224.10

1.0 154.53 161.77 191.51 191.51 203.91 22090 22090  259.38
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Table 4(b). Frequency parameters 1 = wab,/(ph/D) for the doubly-connected super-elliptical and rectangular
(n, = 10, co and n, = 1) fully clamped shallow shells (v = 0.3, a/b = 1.0, ¢’/t" = 1.0, @’/a = 0.3 and a/h = 100.0)

Mode sequence number

n, bR,  RJR, 1 2 3 4 5 6 7 8

0.0 all 39.458 71721 71.722 10412 12584 156.33  162.18  162.18

—-1.0 51.660 77.580  77.581 106.67 128.26  159.28  163.85  163.85

—0.5 47993  73.852 77.332 105.74 127.29 15830 16294  163.69

0.1 0.0 48.140  73.041  77.701 10548  126.84 15826  162.87  163.87
0.5 52.082  75.255 78.680 10590 12696  159.13  163.63  164.38

1.0 59.030 80.242  80.243 10697 127.60 16093  165.23  165.23

—1.0 10570 113.15 11315 12498 14599 17699 17699 181.94

—0.5 88.987  89.741 111.56 117.76  136.96  169.41 174.68  175.15

10 0.3 0.0 82.728  90.237 114.00 115.59 13241 168.65 17496  176.59
0.5 98.946 107.52  118.72 120.17 13449 17486 180.66  181.51

1.0 12646 12926 129.26 13396 140.59 187.14  187.14 19590

—1.0 15433 15795 15795 161.12 17536  202.85 20285 223.62

—0.5 11295 13557 138.05 151.25 152.07 186.88 19535  207.15

0.5 0.0 98.805 132.59 13527 138.89 15679  185.04 198.01  208.64
0.5 13373 139.21 14625 16438 17249  196.88  206.80  223.95

1.0 15498 162.23 191.83 191.83 20440 221.53 22153  259.18

0.0 all 39.360 69417 69418 103.57 12472  156.15  160.47  160.47

-1.0 51470 75364  75.364 106.12  127.11 159.09  162.19  162.19

—0.5 47.833  71.580  75.124 10518  126.15  158.11 161.28  161.99

0.1 0.0 47988  70.766  75.514 10491 125.70  158.07 161.20  162.16
0.5 51917  73.039  76.524 10530  125.81 15894  161.97  162.68

1.0 58.833  78.127  78.127 10634 12643 160.73  163.56  163.56

—1.0 10509 I11.08 111.08 124.4] 14463 17562 175.62  181.70

-0.5 86.856  89.233 109.55 117.16 13577 168.08 173.50  174.36

© 0.3 0.0 80.615  89.731 112,10 114.87 13127 167.29 174.61 174.87
0.5 97.119 10698 117.80 11842  133.17 173.38 17899  181.20

1.0 12528 127.63  127.63 13329 139.02 18550 18550  195.64

—1.0 15368 15553 15553 15991 173.61 20198 201.98  223.40

—0.5 11086 13445 13735 149.69 150.04 186.23 193.82  206.66

0.5 0.0 96.819 131.59 13352  138.31 154.56 18425 196.66  208.06
0.5 13213 137.72 14457 16321 170.58 19551  205.13 22359

1.0 152.88 15996  190.27  190.27 203.00 219.12  219.12  258.93

b/R, = 0.1 to 154.54 for b/R, = 0.5 in Table 3(a). The similar characteristic can also be
observed in Tables 4(a) and 4(b). The fully clamped shells also provide a relatively higher
fundamental A with respect to the simply supported shell. The effect of R,/R, on the
fundamental A can be readily seen in the tables where it initially decreases and then increases
when R,/R, changes from —1 to 1. The lowest fundamental 4 generally corresponds to a
negative R /R,.

A set of selected vibration mode shapes is also included for illustrative purposes.
Figures 2(a) and 2(b) illustrate the vibration mode shapes of simply supported super-
elliptical shells havingn, = 1and 10 (v =0.3,a/b=1,a'/a=0.3,a'/b’ = 1, a/h = 100 and
n, = 1) with a free circular cutout. Figures 3(a) and 3(b) are the corresponding mode shapes
of a fully clamped shell at the outer edge. The shaded regions represent negative deflection
amplitudes and the unshaded regions otherwise. The lines of demarcation are the nodal
lines having zero deflection. It is clear that these modes can be classified into SS, SA, AS
and AA modes with respect to the x- and y-axis. There are more nodal lines for higher
modes of vibration as demonstrated in these figures.

4. CONCLUSIONS

A global continuum approach for free vibration of perforated doubly-curved shallow
shells with rounded corners has been presented. The outer and cutout peripheries of a shell
were described by super-elliptical functions having different powers. The analysis accounts
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Ry W-Mode Shapes
fiz Mode3  Moded  Mode 5 Mode 6
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Fig. 2(a). Vibration mode shapes for a doubly-connected simply supported circular shell with a
completely free circular cutout (v = 0.3, a/b = 1.0, a’/b" = 1.0, a’/a = 0.3, b/h = 100.0, /R, = 0.5
and n, =n,=1).
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Fig. 2(b). Vibration mode shapes for a doubly-connected simply supported super-elliptical shell
with a completely free circular cutout (v=0.3, a/b =1.0, a'/b" = 1.0, a’/a = 0.3, b/h = 100.0,
b/R,=0.5,n, = 10and n, = 1).
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W-Mode Shapes
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-1.0
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Fig. 3(a). Vibration mode shapes for a doubly-connected fully clamped circular shell with a
completely free circular cutout (v = 0.3, a/b = 1.0, a’/b’ = 1.0, a’/a = 0.3, b/h = 100.0, b/R, = 0.5

andn, =n,=1).

W-Mode Shapes
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Fig. 3(b). Vibration mode shapes for a doubly-connected fully clamped super-elliptical shell with a
completely free circular cutout (v = 0.3, a/b = 1.0, a’/b’ = 1.0, @’/a = 0.3, b/h = 100.0, b/R, = 0.5,

n,=10and n, = 1).
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for general types of boundary constraints. The pb-2 shape functions adopted are sets of
orthogonally generated two-dimensional polynomials. These admissible shape functions
are kinematically oriented and satisfy the geometric boundary conditions at the outset.

A comprehensive convergence study has been performed to demonstrate the upper
bound eigenvalues and to determine the degrees of polynomial required to ensure a sat-
isfactory convergence. Comparison of frequencies with other experimental and com-
putational results has also been presented. Selected numerical examples included are the
simply supported and fully clamped shells (the outer peripheries) with a free, circular inner
cutout. The effects of outer super-elliptical power (#,), shallowness ratio and curvature
ratio (which determines whether a shell is hyperbolic paraboloidal, cylindrical or spherical)
have been carefully examined. It has been shown that the natural frequencies of a super-
elliptical shell with a high outer super-elliptical power approach the solutions of a rec-
tangular shell having the same geometrical and mechanical properties [see Sections 3.1 and
3.2 or Tables 2, 3(b) and 4(b)]. It has also been justified in the numerical studies that a
minimum fundamental frequency exists corresponding to a shell with a negative curvature
ratio (a hyperbolic paraboloidal shell).
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APPENDIX A
Minimization of the energy expressions as given in eqn (I1) is described as follows:

O Ymax _ 12abD| 1 & 010, ¥ & o gioon, L[] V) & o g 1000
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and i, j = 1, 2,... m. The double integrations above are symmetric and in general S % = ¢ jide.

APPENDIX B

The stiffness and mass matrices as given in eqn (12) are

K. (K.l K]

K= (Kol [Ki] (B1)
sym. [wa]
(M. [0] fo]
M= (M.] (0] (B2)
sym. [Mww]

and the vector of unknown coeflicients is

{C.}
{Ct=41{C} . (B3)
{C.}
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The elements in eqns (B1) and (B2) can be expressed as
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wherei, j=1,2,....m
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